We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Loss of Tumor Suppressor Gene Promotes Breast Cancer Metastasis into the Lungs

By LabMedica International staff writers
Posted on 08 Jun 2014
Cancer researchers have found that loss of a specific tumor suppressor gene promotes the metastasis of breast cancer cells into the lungs.

Investigators at the Institute for Research in Biomedicine (Barcelona, Spain) characterized the biological activity of RARRES3 (retinoic acid receptor responder protein 3), a recently identified metastasis suppressor gene whose reduced expression in primary breast tumors identifies a subgroup of patients more likely to develop lung metastasis. More...
This work was carried out on samples from mice and in cell lines, and then was validated in 580 samples from human primary breast cancer tumors.

Results published in the May 27, 2014, online edition of the journal EMBO Molecular Medicine revealed that the loss of function of the RARRES3 gene in primary breast tumor cells promoted metastasis to the lung. RARRES3 downregulation engaged metastasis-initiating capabilities by facilitating adhesion of the tumor cells to the lung parenchyma. In addition, impaired tumor cell differentiation due to the loss of RARRES3 phospholipase A1/A2 activity also contributed to lung metastasis.

Looking at the results from the other direction, it was clear that the investigators had shown that RARRES3 blocked adhesion to the lung parenchyma and, second, the phospholipase activity of RARRES3 stimulated differentiation attributes, thus blunting metastasis-initiating functions at the lung required for the breast cancer cells to establish a lesion.

"RARRES3 is suppressed in estrogen receptor-negative (ER-) breast cancer tumors, thus stimulating the later invasion of the cancer cells and conferring them a greater malignant capacity," said senior author Dr. Roger Gomis, head of the growth control and cancer metastasis laboratory at the Institute for Research in Biomedicine. "The transformation of a normal cell into an invasive tumor cell is not just about acquiring capacities but equally important is the loss of certain genes, such as RARRES3."

Related Links:

Institute for Research in Biomedicine



Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic Hematology Analyzer
DH-800 Series
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.