We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




RNA Interference Mechanism May Be Used to Treat Cancer

By LabMedica International staff writers
Posted on 27 May 2014
RNA carried by new nanoparticles can silence genes in many organs, and researchers believe that it could be utilized to treat cancer.

RNA interference (RNAi), a technique that can inactivate specific genes inside living cells, holds great potential for treating many disorders caused by malfunctioning genes. More...
However, it has been difficult for scientists to find safe and effective ways to deliver gene-blocking RNA to the correct targets.

Up to now, researchers have received the best results with RNAi targeted to diseases of the liver, partly because it is a normal endpoint for nanoparticles. But now, in a study appearing in the May 11, 2014, issue of the journal Nature Nanotechnology, a Massachusetts Institute of Technology (MIT; Cambridge, MA, USA)-led team reported achieving the most effective RNAi gene silencing to date in nonliver tissues.

Using nanoparticles designed and screened for endothelial delivery of short strands of RNA called siRNA, the researchers were able to target RNAi to endothelial cells, which form the linings of most organs. This raises the possibility of using RNAi to treat many types of disease, including cancer and cardiovascular disease, according to the researchers.

“There’s been a growing amount of excitement about delivery to the liver in particular, but in order to achieve the broad potential of RNAi therapeutics, it’s important that we be able to reach other parts of the body as well,” remarked Dr. Daniel Anderson, an associate professor of chemical engineering, a member of MIT’s Koch Institute for Integrative Cancer Research and Institute for Medical Engineering and Science, and one of the study’s senior authors. The article’s other senior author is Dr. Robert Langer, a professor at MIT and a member of the Koch Institute.

Discovered in 1998, RNAi is a naturally occurring process that allows cells to control their genetic expression. Genetic data are typically carried from DNA in the nucleus to ribosomes, cellular structures where proteins are produced. Short strands of RNA called siRNA attach to the messenger RNA that carries this genetic information, preventing it from reaching the ribosome.

Drs. Anderson and Langer have earlier developed nanoparticles, now in clinical development, that can deliver siRNA to liver cells called hepatocytes by coating the nucleic acids in fatty compounds called lipidoids. Hepatocytes clutch onto these particles because they resemble the fatty droplets that circulate in the blood after a high-fat meal is consumed. “The liver is a natural destination for nanoparticles,” Dr. Anderson stated. “That doesn’t mean it’s easy to deliver RNA to the liver, but it does mean that if you inject nanoparticles into the blood, they are likely to end up there.”

Scientists have had some success delivering RNA to nonliver organs, but the MIT scientists wanted to formulate an approach that could achieve RNAi with lower doses of RNA, which could make the treatment more effective and safer.

The new MIT particles consist of three or more concentric spheres made of short chains of a chemically modified polymer. RNA is packaged within each sphere and released once the particles enter a target cell. A major aspect of the MIT system is that the scientists were able to create a “library” of many different substances and rapidly evaluate their potential as delivery agents. They evaluated about 2,400 variants of their particles in cervical cancer cells by measuring whether they could turn off a gene coding for a fluorescent protein that had been added to the cells. They then tested the most promising of those in endothelial cells to see if they could interfere with a gene called TIE2, which is expressed almost exclusively in endothelial cells.

With the best-performing particles, the researchers reduced gene expression by more than 50%, for a dose of only 0.20 mg/kg of solution—about one-hundredth of the amount required with existing endothelial RNAi delivery vehicles. They also showed that they could block up to five genes at once by delivering different RNA sequences.

The best results were seen in lung endothelial cells, but the particles also effectively delivered RNA to the kidneys and heart, among other organs. Although the particles did penetrate endothelial cells in the liver, they did not enter liver hepatocytes. “What’s interesting is that by changing the chemistry of the nanoparticle you can affect delivery to different parts of the body, because the other formulations we’ve worked on are very potent for hepatocytes but not so potent for endothelial tissues,” Dr. Anderson said.

To demonstrate the potential for treating lung disease, the researchers used the nanoparticles to block two genes that have been implicated in lung cancer—vascular endothelial growth factor (VEGF) receptor 1 and Dll4, which encourage the growth of blood vessels that feed tumors. By blocking these in lung endothelial cells, the researchers were able to slow lung tumor growth in mice and also reduce the spread of metastatic tumors.

Dr. Masanori Aikawa, an associate professor of medicine at Harvard Medical School (Boston, MA, USA), described the new technology as “a monumental contribution” that should help researchers develop new treatments and learn more about diseases of endothelial tissue such as atherosclerosis and diabetic retinopathy, which can cause blindness. “Endothelial cells play a very important role in multiple steps of many diseases, from initiation to the onset of clinical complications,” commented Dr. Aikawa, who was not part of the research team. “This kind of technology gives us an extremely powerful tool that can help us understand these devastating vascular diseases.”

The researchers next plan to explore additional potential targets in hopes that these particles could eventually be deployed to treat cancer, atherosclerosis, and other diseases.

Related Links:

Massachusetts Institute of Technology
Harvard Medical School



Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Collection and Transport System
PurSafe Plus®
New
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
New
Automatic Chemiluminescence Immunoassay Analyzer
Shine i2000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Over 100 new epigenetic biomarkers may help predict cardiovascular disease risk (Photo courtesy of 123RF)

Routine Blood Draws Could Detect Epigenetic Biomarkers for Predicting Cardiovascular Disease Risk

Cardiovascular disease is a leading cause of death worldwide, yet predicting individual risk remains a persistent challenge. Traditional risk factors, while useful, do not fully capture biological changes... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.