We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Novel Technique Allows Genome Sequencing of Single Malaria Cells

By LabMedica International staff writers
Posted on 18 May 2014
A recently developed technique for analyzing the genome of a malaria parasite within a single red blood cell is expected to aid in the understanding of the molecular cell biology of these organisms and in the design of new drugs to prevent their growth and spread.

Investigators at the Texas Biomedical Research Institute (San Antonio, USA) combined advanced cell sorting technology and whole-genome amplification (WGA) to generate high-quality DNA samples from parasite-infected red blood cells (RBCs) for genotyping and next-generation sequencing. More...
They optimized this approach through analysis of more than 260 single-cell assays, and quantified accuracy by decomposing mixtures of known parasite genotypes and obtaining highly accurate (> 99%) single-cell genotypes.

The investigators applied this validated approach directly to infections of two major malaria species, Plasmodium falciparum, for which long term culture is possible, and Plasmodium vivax, for which no long-term culture is feasible. They demonstrated that the single-cell genomics approach could be used to generate parasite genome sequences directly from patient blood in order to unravel the complexity of P. vivax and P. falciparum infections.

Malaria parasite infections are complex and often contain multiple different parasite genotypes and even different parasite species. "This has really limited our understanding of malaria parasite biology" said senior author Dr. Ian Cheeseman, a postdoctoral scientist in the genetics department of the Texas Biomedical Research Institute. “It is like trying to understand human genetics by making DNA from everyone in a village at once. The data is all jumbled up – what we really want is information from individuals. We are now able to look at malaria infections with incredible detail. This will help us understand how to best design drugs and vaccines to tackle this major global killer.”

The study describing the novel single-cell approach for genome sequencing was published in the May 8, 2014, online edition of the journal Genome Research.

Related Links:

Texas Biomedical Research Institute



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Alcohol Testing Device
Dräger Alcotest 7000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.