We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Graphene Could Reshape Neurological Disease Care

By LabMedica International staff writers
Posted on 14 May 2014
Print article
Image: Structure of graphene (Photo courtesy of Wikimedia).
Image: Structure of graphene (Photo courtesy of Wikimedia).
Graphene, a two-dimensional (2D) crystalline allotrope of carbon, may lead to new advances in several areas of neurosurgery, according to a new topic review.

Researchers at the University of Illinois College of Medicine (Peoria, USA) and Invision Health Brain and Spine Center (Williamsville, NY, USA) argue that neurosurgeons could use graphene-based metamaterials, which possess unique optical, thermal, mechanical, electronic, and quantum properties, to encourage the development of high-performance, lightweight, and malleable electronic devices, ultracapacitors, optical modulators, molecular biodevices, organic photovoltaic cells, lithium-ion microbatteries, frequency multipliers, quantum dots, and integrated circuits.

According to the review, these potential breakthroughs in graphene biomedical technology over the next few decades could significantly impact several areas of neurosurgery, including neuro-oncology, neurointensive care, neuroregeneration research, peripheral nerve surgery, functional neurosurgery, and spine surgery. The review also provides an introduction to the main properties of graphene and discusses future perspectives of ongoing frontline investigations of graphene, with special emphasis on research fields that are expected to substantially impact experimental and clinical neurosurgery. The topic review was published in the May 2014 issue of Neurosurgery.

“While graphene has been shown to be biocompatible, more basic research is needed to examine the long-term biological effects of graphene implants and to answer other important clinical questions,” concluded study authors Tobias Mattei, MD, and Azeem Rehman, BSc. “Increased awareness of the ongoing frontline research on graphene may enable the neurosurgical community to properly take advantage of the technological applications such a new metamaterial may offer.”

Graphene is a monolayer atomic-scale honeycomb lattice of carbon atoms which combines the greatest mechanical strength ever measured in any material (natural or artificial) with very light weight and high elasticity. Graphene has unique optical and photothermal properties which allow it to release energy in the form of heat in response to light input; it also has very high electrical conductivity. The high surface area allows bioconjugation with common biomolecules. Andre Geim and Kostya Novoselov of the University of Manchester (United Kingdom) were awarded the Nobel Prize in Physics in 2010 for its development.

Related Links:

Invision Health Brain and Spine Center
University of Illinois College of Medicine


Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Pipet Controller
Stripettor Pro
New
HbA1c Test
HbA1c Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.