We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Transformed Intestinal Cells Produce Insulin in Novel Diabetes Treatment

By LabMedica International staff writers
Posted on 25 Mar 2014
A population of intestinal cells was found to be capable of morphing into insulin-producing beta-cells, which may pave the way a novel treatment for diabetes.

Type I diabetes mellitus, also known as insulin dependent diabetes, is believed to be caused by an autoimmune response where the body's own immune system attacks the beta cells and destroys them. More...
The body can no longer produce and secrete insulin into the blood and fails to regulate the blood glucose concentration.

Investigators at the University of Pennsylvania (Philadelphia, USA) had shown previously that introduction of three beta-cell transcription factors—Pdx1 (P), MafA (M), and Ngn3 (N) [collectively called PMN] into the acinar cells of the pancreas could cause these cells to transform into insulin-producing beta-like cells.

In the current study, the investigators sought other readily available cell types that could be transformed into beta-like cells. To this end they performed an in vivo screen by expressing the three beta cell “reprogramming factors” in a wide spectrum of tissues.

They reported in the March 6, 2014, online edition of the journal Cell Reports that in a mouse model the transient expression of PMN in intestinal cells promoted the rapid conversion of intestinal crypt cells into endocrine cells, which coalesced into “neoislets” below the crypt base. Neoislet cells expressed insulin and showed ultrastructural features of beta cells. Importantly, intestinal neoislets were glucose-responsive and able to ameliorate hyperglycemia in diabetic mice. Furthermore, PMN expression in human intestinal “organoids” stimulated the conversion of intestinal epithelial cells into beta-like cells.

“Our results demonstrate that the intestine could be an accessible and abundant source of functional insulin-producing cells,” said senior author Dr. Ben Z. Stanger, assistant professor of medicine at the University of Pennsylvania. “Our ultimate goal is to obtain epithelial cells from diabetes patients who have had endoscopies, expand these cells, add PMN to them to make beta-like cells, and then give them back to the patient as an alternate therapy. There is a long way to go for this to be possible, including improving the functional properties of the cells, so that they more closely resemble beta cells, and figuring out alternate ways of converting intestinal cells to beta-like cells without gene therapy.”

“It is a powerful idea that if you have the right combination of transcription factors you can make any cell into any other cell. It is cellular alchemy,” said Dr. Stanger.

Related Links:

University of Pennsylvania



Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Collection and Transport System
PurSafe Plus®
New
Rapid Molecular Testing Device
FlashDetect Flash10
New
Laboratory Software
ArtelWare
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Over 100 new epigenetic biomarkers may help predict cardiovascular disease risk (Photo courtesy of 123RF)

Routine Blood Draws Could Detect Epigenetic Biomarkers for Predicting Cardiovascular Disease Risk

Cardiovascular disease is a leading cause of death worldwide, yet predicting individual risk remains a persistent challenge. Traditional risk factors, while useful, do not fully capture biological changes... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.