We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




New Kit with Novel Method Improves Microbiome DNA Enrichment

By LabMedica International staff writers
Posted on 22 May 2013
Print article
A new kit has been developed to enrich microbial genomic DNA to enable more feasible and affordable microbiome next generation DNA sequencing.

New England Biolabs (NEB; Ipswich, MA, USA) introduces the “NEBNext Microbiome DNA Enrichment Kit,” which uses a method designed to separate microbial DNA from host DNA, reducing the high cost of sequencing microbiome DNA to a more practical level. Microbiome samples are commonly dominated by host DNA (up to 99%), complicating genetic analyses of these samples, particularly total microbiome DNA sequencing studies. Since only a small percentage of sequencing reads pertain to the microbes of interest, obtaining sufficient sequence coverage of the microbiome DNA can become cost-prohibitive or even technically infeasible.

The new kit utilizes the MBD2-Fc protein, which binds to CpG-methylated DNA (including human genomic DNA) with very high specificity. The MDB2-Fc protein is attached to Protein A-coated magnetic beads, enabling simple and quick removal of the contaminating host DNA in about 30 minutes. The microbial DNA-enriched sample is then ready to be processed for multiple downstream applications, including next generation sequencing, qPCR, and endpoint PCR.

“Although microbiome whole genome sequencing provides more information than other methods, such as 16S analysis, this method has proven difficult for many samples, due to the presence of contaminating host genomic DNA,” said Fiona Stewart, Product Marketing Manager, Next Generation Sequencing at NEB. “The NEBNext Microbiome DNA Enrichment Kit makes it possible to substantially enrich samples for nonhost, microbial DNA, while retaining microbial diversity, thereby improving the quality and cost-effectiveness of downstream analyses.”

Related Links:

New England Biolabs
NEBNext Microbiome DNA Enrichment Kit



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.