We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Discovery Paves Way for Ultrafast High-Resolution Imaging in Real Time

By LabMedica International staff writers
Posted on 30 Apr 2013
Print article
Image: A shaped group of ultrafast electrons. The pattern is meant to look like the iris shutter of a camera, invoking the concept of a fast snapshot (Photo courtesy of Andrew McCulloch).
Image: A shaped group of ultrafast electrons. The pattern is meant to look like the iris shutter of a camera, invoking the concept of a fast snapshot (Photo courtesy of Andrew McCulloch).
A new research advance involving ultrafast high-resolution imaging in real time could soon become a reality.

In research published April 16, 2013, in the journal Nature Communications, researchers from the University of Melbourne (Australia) and the University’s ARC Centre for Excellence in Coherent X-ray Science have revealed that ultrashort durations of electron bunches generated from laser-cooled atoms can be both very cold and ultrafast.

Lead researcher Assoc. Prof. Robert Scholten reported on this astonishing finding was a significant move towards making ultrafast high-resolution electron imaging a reality. He said the finding would enhance the ability of scientists in labs to create high quality snapshots of quick alterations in biologic molecules and specimens. “Electron microscopy, which uses electrons to create an image of a specimen or biological molecule, has revolutionized science by showing us the structure at micro- and even nanometer scales,” Assoc. Prof. Scholten said. “But it is far too slow to show us critical dynamic processes, for example the folding of a protein molecule which requires time resolution of picoseconds [billionth of a billionth of a second]. “Our discovery opens up the possibility to dramatically enhance the technology.”

Researchers remarked that imaging technology at this level is like making a “molecular movie.” The temperature of the electrons determines how sharp the images can be, while the electron pulse duration has a similar effect to shutter speed. The scientists have been able to merge these two facets of speed and temperature, generating ultrafast electron pulses with cold electrons, creating opportunities for new developments in the field.

Related Links:

University of Melbourne
ARC Centre for Excellence in Coherent X-ray Science


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.