We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Loss of Beta-Cell EPAC2A Activity Linked to Development of Type II Diabetes

By LabMedica International staff writers
Posted on 25 Apr 2013
Diabetes researchers have discovered how the protein EPAC2A (guanine nucleotide exchange factors for Ras-like small GTPases) affects glucose metabolism and how loss of this protein activity may contribute to the development of type II diabetes.

Incretin hormone action on beta cells stimulates in parallel two different intracellular cyclic AMP-dependent signaling branches mediated by PKA (protein kinase A) and EPAC2A. More...
Both pathways contribute towards potentiation of glucose-stimulated insulin secretion. However, the overall functional role of EPAC2A in beta cells as it relates to in vivo glucose homeostasis has not been well understood.

Incretins are a group of gastrointestinal hormones that cause an increase in the amount of insulin released from the beta-cells of the islets of Langerhans after eating, even before blood glucose levels become elevated. They also slow the rate of absorption of nutrients into the blood stream by reducing gastric emptying and may directly reduce food intake. Furthermore, they also inhibit glucagon release from the alpha cells of the islets of Langerhans. The two main candidate molecules that fulfill criteria for an incretin are glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP).

In the current study, investigators at Johns Hopkins University (Baltimore, MD, USA) examined the interaction between incretins and EPAC2A. To do this they genetically engineered a line of mice lacking the gene for EPAC2A production.

Results published in the April 11, 2013, online edition of the journal Diabetes revealed that EPAC2A deficiency did not impact glucose-stimulated insulin secretion in the knockout mice under normal conditions. However, when the mice were exposed to diet-induced insulin resistance or incretin hormone stimulation of beta cells, EPAC2A was required for the increased beta-cell response to secretory demand. Under these circumstances, EPAC2A was required for potentiating the early dynamic increase in islet calcium levels after glucose stimulation, which is reflected in potentiated first phase insulin secretion.

“It is as if during these extreme conditions, the body calls upon EPAC2 as backup to help it balance insulin supply and demand,” said senior author Dr. Mehboob Hussain, associate professor of pediatrics, medicine, and biological chemistry at Johns Hopkins University. “Drugs that precision-target failing pancreatic cells and restore or boost their function have become the holy grail of diabetes research. We believe that our finding establishes a pathway to do just that.”

Related Links:
Johns Hopkins University


New
Gold Member
Serological Pipets
INTEGRA Serological Pipets
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Human Estradiol Assay
Human Estradiol CLIA Kit
New
Pipette
Accumax Smart Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: A diagnostic test can distinguish patients with head and neck squamous cell carcinoma who can be cured with surgery alone (Photo courtesy of University of Turku)

Novel Diagnostic Tool to Revolutionize Treatment Guidance of Head and Neck Cancer

Head and neck squamous cell carcinoma (HNSCC) is a solid tumor type commonly treated with surgery. However, there has been no clinically available method to determine which patients can be cured with surgery... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: The 3D paper-based analytical device has shown high clinical accuracy for adult-onset immunodeficiency (Photo courtesy of National Taiwan University)

Paper-Based Device Accurately Detects Immune Defects in 10 Minutes

Patients with hidden immune defects are especially vulnerable to severe and persistent infections, often due to autoantibodies that block interferon-gamma (IFN-γ), a key molecule in immune defense.... Read more

Microbiology

view channel
Image: The groundbreaking salmonella antimicrobial resistance prediction platform has demonstrated 95% accuracy (Photo courtesy of Yujie You et al., DOI: 10.1016/j.eng.2025.01.013)

New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance

Antimicrobial-resistant Salmonella strains are a growing public health concern due to the overuse of antimicrobials and the rise of genetic mutations. Accurate prediction of resistance is crucial for effective... Read more

Technology

view channel
Image: The Check4 gene-detection platform (Photo courtesy of IdentifySensors)

Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells

A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.