Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Compound Enhances Skeletal Tissue Regeneration

By LabMedica International staff writers
Posted on 08 Apr 2013
New cutting-edge research revealed how a novel low-molecular-weight compound enhances ectopic bone formation and fracture repair. More...


The study, by investigators from conducted by the Atlanta Veterans Affairs Medical Center (GA, USA) and Emory University School of Medicine (Atlanta, GA, USA), was conducted to design and evaluate small molecules that could enhance recombinant human bone morphogenetic protein-2 (rhBMP-2) responsiveness. The investigation used two models to assess the ability of a small synthetic molecule to optimize bone formation in a rodent ectopic model and to determine whether an injection of that molecule accelerate callus formation in a rodent femoral fracture model.

The findings revealed that a single dose of the small molecule enhanced bone healing in the ectopic model combined with the occurrence of low-dose exogenous rhBMP-2, and in the femoral fracture model with the presence of only naturally occurring BMPs. The study’s findings, published in March 6, 2013, in the Journal of Bone and Joint Surgery.

SkelRegen, LLC (West Chester, PA, USA) is the first company to focus on newly identified small molecules that target different aspects of the skeletal tissue formation pathway. The study’s findings serves as additional confirmation that by following established procedures, SkelRegen continues to work on research to regenerate bone from scratch. “While our work on skeletal tissue regeneration is far from complete, this study exemplifies that research is continuing and SkelRegen technology is at the forefront,” said Stephen LaNeve, SkelRegen’s cofounder and CEO. “Our partnership with Emory University makes it possible for us to be part of such revolutionary work.”

Boden, SkelRegen’s cofounder and chief medical, science and technology officer, said, “The process was long and arduous and would not have been possible without the computational design work of the Emory/VA team led by Sree Sangadala, PhD But, ultimately these results further demonstrate how bone regeneration with small molecules will transform musculoskeletal care.”

SkelRegen identified not one, but multiple small molecules that are osteoinductive and target different features of the skeletal tissue formation pathway. All of the compounds are inexpensive to manufacture and many of the compounds are clear for other uses by the US Food and Drug Administration (FDA), therefore, they already have acceptable safety and toxicity profiles.

Related Links:

Atlanta Veterans Affairs Medical Center
Emory University School of Medicine
Regen



Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hybrid Pipette
SWITCH
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.