We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Directly Reprogramming Nerve Cells in the Brain

By LabMedica International staff writers
Posted on 04 Apr 2013
Print article
Image: Reprogrammed nerve cell (Photo courtesy of Malin Parmar).
Image: Reprogrammed nerve cell (Photo courtesy of Malin Parmar).
Generating new cells in the body to cure disease, the purview of cell therapy, has taken another significant step in the development toward new treatments. New Swedish research demonstrated that it is possible to reprogram other cells to become nerve cells, directly in the brain.

Two years ago, researchers in Lund University (Sweden) were the first in the world to reprogram fibroblasts to dopamine-producing nerve cells, without going through the stem cell stage. The scientists are now going further and shown that it is possible to reprogram both skin cells and support cells directly to nerve cells, in place in the brain.

“The findings are the first important evidence that it is possible to reprogram other cells to become nerve cells inside the brain,” said Dr. Malin Parmar, research group leader and reader in neurobiology at Lund.

The researchers employed genes designed to be switched on or off using a drug. The genes were inserted into two types of human cells, glia cells and fibroblasts, support cells that are naturally present in the brain. Once the researchers had transplanted the cells into the brains of rats, the genes were triggered using a drug in the animals’ drinking water. The cells then began their conversion into nerve cells.

In other research with lab mice, where similar genes were injected into the mice’s brains, the investigators also were able to reprogram the mice’s own glia cells to become nerve cells. “The research findings have the potential to open the way for alternatives to cell transplants in the future, which would remove previous obstacles to research, such as the difficulty of getting the brain to accept foreign cells, and the risk of tumor development,” said Dr. Parmar.

The new technique of direct reprogramming in the brain could create new ways to more successfully replace dying brain cells in disorders such as Parkinson’s disease. “We are now developing the technique so that it can be used to create new nerve cells that replace the function of damaged cells. Being able to carry out the reprogramming in vivo makes it possible to imagine a future in which we form new cells directly in the human brain, without taking a detour via cell cultures and transplants,” concluded Dr. Parmar.

The study’s findings were published March 26, 2012, in the journal Proceedings of the National Academy of Science of the United States of America (PNAS).

Related Links:

Lund University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: The new blood test identifies key biomarkers of osteoarthritis (Photo courtesy of Shutterstock)

Blood Test Predicts Knee Osteoarthritis Eight Years Before Signs Appears On X-Rays

Osteoarthritis (OA) is the most prevalent form of arthritis, impacting millions worldwide and resulting in significant economic and social costs. Although no cure exists currently, the effectiveness of... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Sampler device could revolutionize sample collection for diagnostic tests (Photo courtesy of ReadyGo Diagnostics)

First of Its Kind Universal Tool to Revolutionize Sample Collection for Diagnostic Tests

The COVID pandemic has dramatically reshaped the perception of diagnostics. Post the pandemic, a groundbreaking device that combines sample collection and processing into a single, easy-to-use disposable... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.