Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Innovative Twists to Nanotechnology Create DNA-Building Toolkit

By LabMedica International staff writers
Posted on 03 Apr 2013
In a new discovery that signifies a key step in resolving a critical design hurdle, investigators have generated a wide range of two-dimensional (2D) and 3D structures that advance the boundaries of the nascent field of DNA nanotechnology.

The field of DNA nanotechnology utilizes nature’s design guidelines and the chemical characteristics of DNA to self-assemble into an increasingly complicated group of molecules for biomedical and electronic applications. More...
Arizona State University (ASU; Phoenix, USA) Prof. Hao Yan led the research team, and some of his lab’s achievements include constructing Trojan horse-like structures to optimize drug delivery to cancerous cells, single molecule sensors, electrically conductive gold nanowires, and programmable molecular robots.

With their bio-inspired architectural machinery, the group continues to study the physical and geometric limits of building at the molecular level. “People in this field are very interested in making wire frame or mesh structures,” said Prof. Yan. “We needed to come up with new design principles that allow us to build with more complexity in three dimensions.”

In their latest twist to the technology, Prof. Yan’s team made new 2D and 3D objects that look like wire-frame art of spheres as well as scissors, molecular tweezers, a screw, hand fan, and even a spider web. The investigators published their findings in the March 22, 2013, issue of Science.

The scientists’ ‘bottom up,’ twist, molecular Lego design approach focuses on a DNA structure called a Holliday junction. In nature, this cross-shaped, double-stacked DNA structure is similar to the four-way traffic stop of genetics—where two distinct DNA helices temporality assemble to exchange genetic data. The Holliday junction is the crossroads responsible for the diversity of life on Earth, and ensures that children are given a unique rearranging of features from the parent’s DNA.

In nature, the Holliday junction twists the double-stacked strands of DNA at an angle of about 60°, which is perfect for swapping genes but sometimes frustrating for DNA nanotechnology scientists, because it limits the design rules of their structures. “In principal, you can use the scaffold to connect multiple layers horizontally,” [which many research teams have utilized since the development of DNA origami by Cal Tech’s Paul Rothemund in 2006]. However, when you go in the vertical direction, the polarity of DNA prevents you from making multiple layers,” said Prof. Yan. “What we needed to do is rotate the angle and force it to connect.”

Making the new structures that Prof. Yan envisaged required re-modifying the Holliday junction by rotating and flipping around the junction point approximately half a clock face (150°). Such an exploit has not been considered in existing designs. “The initial idea was the hardest part,” said Prof. Yan. “Your mind doesn’t always see the possibilities so you forget about it. We had to break the conceptual barrier that this could happen.”

In the new study, by varying the length of the DNA between each Holliday junction, they could force the geometry at the Holliday junctions into an unconventional rearrangement, making the junctions more flexible to construct for the first time in the vertical dimension. Prof. Yan calls the barbeque grill-shaped structure a DNA gridiron. “We were amazed that it worked,” said Prof. Yan. “Once we saw that it actually worked, it was relatively easy to implement new designs. Now it seems easy in hindsight. If your mindset is limited by the conventional rules, it’s really hard to take the next step. Once you take that step, it becomes so obvious.”

The DNA gridiron designs are programmed into a viral DNA, where a string-shaped single strand of DNA is pushed out and folded together with the help of small, staple strands of DNA that help shape the final DNA structure. In a test tube, the mixture is heated, and then quickly cooled, and everything self-assembles and molds into the final shape once cooled. Next, using sophisticated atomic force microscopy (AFM) and transmission electron microscopy (TEM) imaging technology, the researchers were able to study the shapes and sizes of the final products and determine that they had formed accurately.

This application has allowed them to assemble multilayered, 3D structures and curved objects for new applications. “Most of our research team is now devoted toward finding new applications for this basic toolkit we are making,” concluded Dr. Yan. “There is still a long way to go and a lot of new ideas to explore. We just need to keep talking to biologists, physicists, and engineers to understand and meet their needs.”

Related Links:

Arizona State University



Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Rapid Molecular Testing Device
FlashDetect Flash10
Silver Member
PCR Plates
Diamond Shell PCR Plates
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.