We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Antibiotic Resistant Bacteria Are a Source for Novel New Drugs

By LabMedica International staff writers
Posted on 05 Feb 2013
A metabolomic study of antibiotic resistant bacteria demonstrated that these mutant strains possessed extended gene expression not present in the original organism, which may prove to be a rich source of novel drugs.

Bacteria are a long-established source of antibiotics, anticancer agents, and other drugs. More...
Drug developers seeking new bacterially synthesized drugs have recognized that bacterial genomes contain a large number of "silent genes" that code for drug-like compounds, known as secondary metabolites. However, it is has proven to be very difficult to turn on the production of these compounds.

Investigators at Vanderbilt University (Nashville, TN, USA) used advanced metabolomic analysis techniques such as ultra-performance liquid chromatography–ion mobility–mass spectrometry to characterize compounds produced by a cohort of streptomycin- and rifampicin-resistant mutants of Nocardiopsis, a soil-derived actinomycete, grown in the absence of antibiotics.

They reported in the January 22, 2013, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that the resistant strains produced more than 300 compounds that were not expressed by the original organism. Five of these compounds were both unique enough and abundant enough to be isolated and their molecular structures determined and tested for biological activity.

"Normally, we only find one compound per organism, so this is a significant improvement in yield, allowing us to get many new compounds from previously mined microorganisms," said senior author Dr. Brian Bachmann, associate professor of chemistry at Vanderbilt University. "What we are looking for are new species of molecules in the mutants that are the most unique and the most abundant."

"It is as if the bacteria respond to the assault by the antibiotic with a "save-all-ships" strategy of turning on hundreds of silent genes," said Dr. Bachmann. "This technique is something like fracking in the natural gas industry. We have known for a long time that there were large amounts of underground natural gas that we could not extract using conventional methods but now we can, using hydraulic fracturing technology. In a similar fashion we think we can use bacteria's antibiotic resistance to intensively mine the bacterial genome for new drug leads."

Related Links:
Vanderbilt University


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Serological Pipet Controller
PIPETBOY GENIUS
New
Silver Member
Quality Control Material
NATtrol Chlamydia trachomatis Positive Control
New
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: A diagnostic test can distinguish patients with head and neck squamous cell carcinoma who can be cured with surgery alone (Photo courtesy of University of Turku)

Novel Diagnostic Tool to Revolutionize Treatment Guidance of Head and Neck Cancer

Head and neck squamous cell carcinoma (HNSCC) is a solid tumor type commonly treated with surgery. However, there has been no clinically available method to determine which patients can be cured with surgery... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: The 3D paper-based analytical device has shown high clinical accuracy for adult-onset immunodeficiency (Photo courtesy of National Taiwan University)

Paper-Based Device Accurately Detects Immune Defects in 10 Minutes

Patients with hidden immune defects are especially vulnerable to severe and persistent infections, often due to autoantibodies that block interferon-gamma (IFN-γ), a key molecule in immune defense.... Read more

Microbiology

view channel
Image: The groundbreaking salmonella antimicrobial resistance prediction platform has demonstrated 95% accuracy (Photo courtesy of Yujie You et al., DOI: 10.1016/j.eng.2025.01.013)

New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance

Antimicrobial-resistant Salmonella strains are a growing public health concern due to the overuse of antimicrobials and the rise of genetic mutations. Accurate prediction of resistance is crucial for effective... Read more

Technology

view channel
Image: The Check4 gene-detection platform (Photo courtesy of IdentifySensors)

Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells

A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.