Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Sickle Cell Erythrocytes Kill Solid Tumors Resistant to Chemotherapy and Radiation

By LabMedica International staff writers
Posted on 24 Jan 2013
Sickle cell erythrocytes bind to and block blood vessels in the hypoxic microenvironment of solid tumors, and the reactive oxygen species (ROS) they release act to destroy the tumor.

Resistance of hypoxic solid tumors to chemotherapy and radiotherapy remains a major challenge to cancer researchers that calls for conceptually new approaches. More...
In a paper published in the January 9, 2013, online edition of the journal PLOS ONE investigators at the Jenomic Research Institute (Carmel, CA, USA) and their collaborators at Duke University (Durham, NC, USA) identified a novel method for killing solid tumors that was based on the tendency of sickle cell erythrocytes to aggregate when exposed to hypoxic conditions.

The investigators found that within minutes after injection sickle cell erythrocytes, but not normal red blood cells, homed and adhered to hypoxic 4T1 tumor vasculature. Hemoglobin saturation levels were at or below 10% and the cells were distributed over 70% of the tumor space. The bound sickle cell erythrocytes formed microaggregates that obstructed or occluded up to 88% of tumor microvessels. When sickle cell erythrocytes, but not normal red blood cells, were combined with the exogenous pro-oxidant zinc protoporphyrin (ZnPP), they induced a potent tumor killing response.

In contrast to existing treatments directed only to the hypoxic tumor cell, the approach described in this paper targeted the hypoxic tumor vascular environment and induced injury to both tumor microvessels and tumor cells using intrinsic sickle cell erythrocyte-derived oxidants and locally generated ROS.

First author Dr. David S. Terman, founder of the Jenomic Research Institute, said, "Sickle cells, unlike normal red blood cells, stick like Velcro to tumor blood vessels where they cluster and shut down the blood supply of oxygen deprived tumors. Once clumped within the tumor, the sickle cells rupture releasing toxic residues that promote tumor cell death. Sickle cell red blood cells appear to be a potent new tool for treatment of hypoxic solid tumors, which are notable for their resistance to existing cancer treatments."

Related Links:
Jenomic Research Institute
Duke University





Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Anterior Nasal Specimen Collection Swabs
53-1195-TFS, 53-0100-TFS, 53-0101-TFS, 53-4582-TFS
New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.