We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Development of Retinal and Brain Blood Barriers Controlled by Norrin/Frizzled4 Signaling

By LabMedica International staff writers
Posted on 27 Dec 2012
The activity of the Norrin/Frizzled4 protein pair in the embryo controls development of the retinal and brain blood barriers, and the timing of this activity is critically linked to precise blood vessel formation.

Norrin/Frizzled4 (Fz4) signaling activates the canonical Wnt pathway that controls conserved secreted signaling molecules that regulate cell-to-cell interactions during embryogenesis. More...
To determine how this signaling activity would affect the later development of the animal, investigators at Johns Hopkins University (Baltimore, MD, USA;) genetically engineered lines of mice to lack the gene for Norrin, Fz4, or for both genes. The technique that was used gave the investigators temporal and tissue-specific control of Norrin/Fz4 signaling. Other mice were engineered to express Norrin activity at an earlier stage of development than was normal.

Results published in the December 7, 2012, issue of the journal Cell revealed that early initiation of Norrin production led to premature retinal vascular invasion. Delayed Norrin production led to characteristic defects in intraretinal vascular architecture.

In the adult retina and cerebellum, gain or loss of Norrin/Fz4 signaling resulted in a cell-autonomous gain or loss, respectively, of blood retina barrier and blood-brain barrier function, indicating an ongoing requirement for Frizzled signaling in barrier maintenance and substantial plasticity in mature central nervous system vascular structure.

Although crucial to protecting the central nervous system, the blood-brain barrier also prevents drugs in the bloodstream from penetrating the brain to treat diseases. "Our research shows that blood vessel cells lacking Frizzled-4 are leaky," said senior author Dr. Jeremy Nathans, professor of molecular biology and genetics at Johns Hopkins University. "With this information in hand, we hope that someday it may be possible to temporarily loosen the blood-brain barrier, allowing life-saving drugs to pass through."

Related Links:

Johns Hopkins University



New
Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Serological Pipet Controller
PIPETBOY GENIUS
New
Automated Biochemical Analyzer
iBC 900
New
Anterior Nasal Specimen Collection Swabs
53-1195-TFS, 53-0100-TFS, 53-0101-TFS, 53-4582-TFS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: A diagnostic test can distinguish patients with head and neck squamous cell carcinoma who can be cured with surgery alone (Photo courtesy of University of Turku)

Novel Diagnostic Tool to Revolutionize Treatment Guidance of Head and Neck Cancer

Head and neck squamous cell carcinoma (HNSCC) is a solid tumor type commonly treated with surgery. However, there has been no clinically available method to determine which patients can be cured with surgery... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: The 3D paper-based analytical device has shown high clinical accuracy for adult-onset immunodeficiency (Photo courtesy of National Taiwan University)

Paper-Based Device Accurately Detects Immune Defects in 10 Minutes

Patients with hidden immune defects are especially vulnerable to severe and persistent infections, often due to autoantibodies that block interferon-gamma (IFN-γ), a key molecule in immune defense.... Read more

Microbiology

view channel
Image: The groundbreaking salmonella antimicrobial resistance prediction platform has demonstrated 95% accuracy (Photo courtesy of Yujie You et al., DOI: 10.1016/j.eng.2025.01.013)

New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance

Antimicrobial-resistant Salmonella strains are a growing public health concern due to the overuse of antimicrobials and the rise of genetic mutations. Accurate prediction of resistance is crucial for effective... Read more

Pathology

view channel
Image: The smart microscope can predict the onset of misfolded protein aggregation, a hallmark of neurodegenerative diseases (Photo courtesy of EPFL)

Self-Driving Microscope Tracks and Analyzes Misfolded Protein Aggregation in Real Time

The accumulation of misfolded proteins in the brain is central to the progression of neurodegenerative diseases like Huntington’s, Alzheimer’s, and Parkinson’s. Yet to the human eye, proteins that are... Read more

Technology

view channel
Image: The Check4 gene-detection platform (Photo courtesy of IdentifySensors)

Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells

A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.