We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Discrete DNA Elements Regulate the Expression of Malaria Parasite Antigens

By LabMedica International staff writers
Posted on 13 Dec 2012
Molecular biologists studying how the protozoan parasite Plasmodium falciparum, which causes more than 90% of deaths associated with malaria, evades human immune attack through antigenic variation have found that this process is regulated by discrete DNA elements located in the var genes.

Individual parasites express only a single var gene at a time, maintaining the remaining var genes in a transcriptionally silent state. More...
Strict pairing between var gene promoters and a second promoter within an intron found in each var gene is required for silencing and counting of var genes by the mechanism that controls mutually exclusive expression.

Investigators at the Hebrew University of Jerusalem (Israel) outlined how this mechanism works in a paper that was published in the November 29, 2012, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America.

They reported that the approximately 60 var genes were expressed one at a time while the others were silenced. The selectivity of gene expression was accomplished by discrete insulator-like DNA elements that were required for pairing var promoters and introns. These elements were found to be essential for regulating silencing and mutually exclusive gene expression. These elements, found in the regulatory regions of each var gene, were bound by distinct nuclear protein complexes. Any alteration in the specific, paired structure of these elements by either deletion or insertion of additional elements resulted in an unregulated var gene.

Senior author Dr. Ron Dzikowski, senior lecturer in microbiology and molecular genetics at the Hebrew University of Jerusalem, said, "These results are a major breakthrough in understanding the parasite's ability to cause damage. This understanding could lead to strategies for disrupting this ability and giving the immune system an opportunity to clear the infection and overcome the disease. This clever parasite knows how to switch masks to evade an immune attack, but our discovery could lead to new ways to prevent it from continuing this dangerous game."

Related Links:

Hebrew University of Jerusalem



Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Serological Pipet Controller
PIPETBOY GENIUS
New
Urine Chemistry Control
Dropper Urine Chemistry Control
New
Rapid Molecular Testing Device
FlashDetect Flash10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: A diagnostic test can distinguish patients with head and neck squamous cell carcinoma who can be cured with surgery alone (Photo courtesy of University of Turku)

Novel Diagnostic Tool to Revolutionize Treatment Guidance of Head and Neck Cancer

Head and neck squamous cell carcinoma (HNSCC) is a solid tumor type commonly treated with surgery. However, there has been no clinically available method to determine which patients can be cured with surgery... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: The 3D paper-based analytical device has shown high clinical accuracy for adult-onset immunodeficiency (Photo courtesy of National Taiwan University)

Paper-Based Device Accurately Detects Immune Defects in 10 Minutes

Patients with hidden immune defects are especially vulnerable to severe and persistent infections, often due to autoantibodies that block interferon-gamma (IFN-γ), a key molecule in immune defense.... Read more

Microbiology

view channel
Image: The groundbreaking salmonella antimicrobial resistance prediction platform has demonstrated 95% accuracy (Photo courtesy of Yujie You et al., DOI: 10.1016/j.eng.2025.01.013)

New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance

Antimicrobial-resistant Salmonella strains are a growing public health concern due to the overuse of antimicrobials and the rise of genetic mutations. Accurate prediction of resistance is crucial for effective... Read more

Pathology

view channel
Image: The smart microscope can predict the onset of misfolded protein aggregation, a hallmark of neurodegenerative diseases (Photo courtesy of EPFL)

Self-Driving Microscope Tracks and Analyzes Misfolded Protein Aggregation in Real Time

The accumulation of misfolded proteins in the brain is central to the progression of neurodegenerative diseases like Huntington’s, Alzheimer’s, and Parkinson’s. Yet to the human eye, proteins that are... Read more

Technology

view channel
Image: The Check4 gene-detection platform (Photo courtesy of IdentifySensors)

Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells

A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.