We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




New Mole Rat Cancer Resistance Pathway Discovered

By LabMedica International staff writers
Posted on 12 Nov 2012
In a study of a species of mole rats, biologists have identified a cancer resistance mechanism different from another long-lived, cancer-resistant mole rat species discovered earlier. More...


The researchers, led by Professor Vera Gorbunova and Assistant Professor Andrei Seluanov of the University of Rochester (Rochester, NY, USA), found that abnormally growing cells from blind mole rats secrete interferon-beta (IFN-β) that triggers those and neighboring cells to rapidly die. Blind mole rats (BMR) from the Middle East and naked mole rats from Africa, both subterranean rodents with long life spans, are the only examined mammals never known to naturally develop cancer and in which spontaneous tumors have never been observed. Previously, a team led by Profs. Seluanov and Gorbunova identified an anticancer mechanism in the naked mole rat in which the p16 gene causes cancerous cells from these rats to become hypersensitive to overcrowding, preventing them from proliferating further. "We expected blind mole rats to have a similar mechanism [...]. Instead, we discovered they've evolved their own mechanism," said Prof. Seluanov.

In the current study, growth of BMR fibroblast cells in vitro, from the BMR species Spalax judaei and Spalax golani, were examined. The cells were made to actively proliferate for an abnormally large number of population doublings, after which the precancerous-like cells began secreting IFN-β and the cultures underwent massive, concerted necrotic cell death within 3 days. The necrotic cell death phenomenon was independent of culture conditions or telomere shortening. Sequestration of p53 and Rb proteins using SV40 large T antigen completely rescued necrotic cell death. The results suggest that cancer resistance in BMR is conferred by massive necrotic response to overproliferation mediated by p53 and Rb pathways, and triggered by the release of IFN-β.

"Not only were the cancerous cells killed off, but so were the adjacent cells, which may also be prone to tumorous behavior," said Prof. Seluanov. "While people don't use the same cancer-killing mechanism as blind mole rats, we may be able to combat some cancers and prolong life if we could stimulate the same clean sweep reaction in cancerous human cells," said Prof. Gorbunova. Profs. Gorbunova and Seluanov added that next they want to determine what initiates this suicidal secretion of IFN-β.

The study was published online ahead of print November 5, 2012, in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Related Links:
University of Rochester


New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Serological Pipet Controller
PIPETBOY GENIUS
New
Capillary Blood Collection Tube
IMPROMINI M3
New
Hemodynamic System Monitor
OptoMonitor
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: The 3D paper-based analytical device has shown high clinical accuracy for adult-onset immunodeficiency (Photo courtesy of National Taiwan University)

Paper-Based Device Accurately Detects Immune Defects in 10 Minutes

Patients with hidden immune defects are especially vulnerable to severe and persistent infections, often due to autoantibodies that block interferon-gamma (IFN-γ), a key molecule in immune defense.... Read more

Microbiology

view channel
Image: The groundbreaking salmonella antimicrobial resistance prediction platform has demonstrated 95% accuracy (Photo courtesy of Yujie You et al., DOI: 10.1016/j.eng.2025.01.013)

New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance

Antimicrobial-resistant Salmonella strains are a growing public health concern due to the overuse of antimicrobials and the rise of genetic mutations. Accurate prediction of resistance is crucial for effective... Read more

Pathology

view channel
Image: Researchers have developed a novel method to analyze tumor growth rates (Photo courtesy of Adobe Stock)

Novel Method To Analyze Tumor Growth Rates Helps Tracks Progression Between Diagnosis and Surgery

Patients diagnosed with breast cancer often worry about how quickly their tumors grow while they wait for surgery, and whether delays in treatment might allow the disease to spread beyond the point of cure.... Read more

Technology

view channel
Image: The newly designed ExoPatch successfully distinguished melanoma from healthy skin in mice (Photo courtesy of Jeremy Little/Michigan Engineering)

Microneedle Skin Patch Detects Melanoma Without Biopsy or Blood Draw

Melanoma, the most aggressive form of skin cancer, currently requires patients, especially those with fair skin and moles, to undergo regular doctor visits and biopsies every six months to determine if... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.