We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Ion Transport Protein Linked to Brain Cancer Cell Migration and Invasion

By LabMedica International staff writers
Posted on 22 May 2012
By elaborating the molecular interactions of the ion transport protein NKCC1(Na+-K+-Cl-cotransporter 1) cancer researchers have garnered new insights into the forces that drive glioblastoma multiforme cell migration and invasion.

Glioblastoma multiforme (GBM) is an aggressive brain tumor, fatal within one year from diagnosis in most patients despite intensive treatment with surgery, radiation, and chemotherapy. More...
The migratory and microscopically invasive nature of GBM as well as its resistance to chemotherapy renders conventional therapies inadequate in its treatment.

NKCC proteins are membrane transport proteins that transport sodium (Na), potassium (K), and chloride (Cl) ions across the cell membrane. They maintain electroneutrality by moving two positively charged solutes (sodium and potassium) alongside two parts of a negatively charged solute (chloride). NKCC1 is known to regulate cell volume and intracellular chloride concentration and to play an important role in brain tumor-cell invasion.

Researchers at Johns Hopkins University (Baltimore, MD, USA) investigated (1) whether the expression of NKCC1 in human tumors correlated with tumor grade; (2) whether NKCC1 affected cell contractility and migration; (3) whether NKCC1 could have an effect on the interaction between the cells and the cells' adhesion substratum; and (4) whether a signaling mechanism involved in the regulation of NKCC1 by promigratory factors existed in GB cells.

Results published in the May 1, 2012, online edition of the journal PLoS Biology revealed that in addition to its conventional function as an ion transporter, NKCC1 also interacted with the cytoskeleton and affected brain tumor-cell migration by acting as an anchor that transduced contractile forces from the plasma membrane to the extracellular matrix en route to cell migration. Regulation of NKCC1 by a family of unconventional enzymes, the WNK kinases, was an important factor that affected the activity of NKCC1 and determined the invasive ability of brain tumor cells. NKCC1 expression correlated with in vivo glioma aggressiveness, and the transporter activity modulated migration speed and invasiveness of cells derived from various human GBs.

“The biggest challenge in brain cancer is the migration of cancer cells. We cannot control it,” said senior author Dr. Alfredo Quinones-Hinojosa, associate professor of neurosurgery and oncology at Johns Hopkins University. “If we could catch these cells before they take off into other parts of the brain, we could make malignant tumors more manageable, and improve life expectancy and quality of life. This discovery gives us hope and brings us closer to a cure.”

Related Links:
Johns Hopkins University




Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The test utilizes mtDNA biomarkers to detect molecular signatures associated with endometriosis (Photo courtesy of Shutterstock)

Endometriosis Blood Test Could Replace Invasive Laparoscopic Diagnosis

Endometriosis affects an estimated 1 in 10 women globally, yet diagnosis can take 7 to 10 years on average due to the invasive nature of laparoscopy and lack of accurate, non-invasive tests.... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.