We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Newly Characterized Toxin-Antitoxin Module May Lead to Improved Antibiotics

By LabMedica International staff writers
Posted on 13 Dec 2011
An international team of molecular microbiologists has detailed the molecular pathway responsible for a toxin-antitoxin system in Escherichia coli that becomes activated when the bacteria are put under stress.

A toxin-antitoxin system is a set of two or more closely linked genes that together encode both a protein “poison” and a corresponding “antidote.” When these systems are contained on plasmids, they ensure that only the daughter cells that inherit the plasmid survive after cell division. More...
If the plasmid is absent in a daughter cell, the unstable antitoxin is degraded and the stable toxic protein kills the new cell.

MazEF, a toxin-antitoxin locus found in E. coli and other bacteria, induces programmed cell death in response to starvation, specifically a lack of amino acids. This releases the cell's contents for absorption by neighboring cells, potentially preventing the death of close relatives, and thereby increasing the inclusive fitness of the cell that perished. The toxin portion MazF is an endoribonuclease that cleaves single-stranded mRNAs at ACA (adenine-cytosine-adenine) sequences.

Investigators at the Hebrew University of Jerusalem (Israel) and the University of Vienna (Austria) reported in the September 30, 2011, issue of the journal Cell that MazF cleaved RNA molecules at ACA sites at or closely upstream of the AUG (adenine-uracil- guanine) start codon of some specific mRNAs and thereby generated leaderless mRNAs. Moreover, MazF also targeted 16S rRNA within 30S ribosomal subunits at the decoding center, thereby removing 43 nucleotides from the 3-prime terminus. As this region comprises the anti-Shine-Dalgarno (aSD) sequence that is required for translation initiation on canonical mRNAs, a subpopulation of ribosomes is formed that selectively translates the described leaderless mRNAs both in vivo and in vitro.

The characterization of this particular toxin-antitoxin module may lead to new approaches to the design of improved, novel antibiotics that would effectively utilize the stress-inducing mechanism process in order to destroy more efficiently pathogenic bacteria.

Related Links:

Hebrew University of Jerusalem
University of Vienna



Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Urine Chemistry Control
Dropper Urine Chemistry Control
New
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: Insights into sarcomatoid renal cell carcinoma point to broader use of common immunotherapies (Photo courtesy of Salgia NJ et al., Cancer Cell, 2025)

Novel Gene Signature Predicts Immunotherapy Response in Advanced Kidney Cancers

Sarcomatoid renal cell carcinoma (sRCC) is a rare, aggressive form of kidney cancer comprising about 5% of cases and is typically diagnosed at late stages. Resistant to most therapies, it has shown unusually... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.