We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Protein “Switches” Designed to Transform Cancer Cells into Chemotherapy Factories

By LabMedica International staff writers
Posted on 11 Oct 2011
Scientists have devised a protein “switch” that instructs cancer cells to manufacture their own anticancer chemotherapy.

In lab tests, the researchers, from Johns Hopkins University (Baltimore, MD, USA), demonstrated that these switches, working from inside the cells, can activate a powerful cell-killing drug when the device identifies a marker linked to cancer. More...
The goal, the scientists said, is to deploy a new type of weapon that causes cancer cells to self-destruct while sparing healthy tissue.

This new cancer-fighting strategy and promising early lab test results were reported in September 2011 in the online early edition of Proceedings of the [US] National Academy of Sciences. Although the switches have not yet been evaluated on human patients, and much more testing must be done, the researchers reported that they have taken an exciting first step toward adding an innovative weapon to the difficult task of treating cancer.

One key problem in fighting cancer is that broadly applied chemotherapy usually also harms healthy cells. In the protein switch strategy, however, a physician would instead administer a “prodrug,” meaning an inactive form of a cancer-fighting drug. Only when a cancer marker is present would the cellular switch turn this harmless prodrug into a potent form of chemotherapy.

“The switch in effect turns the cancer cell into a factory for producing the anticancer drug inside the cancer cell,” said Dr. Marc Ostermeier, a Johns Hopkins chemical and biomolecular engineering professor in the Whiting School of Engineering, who supervised development of the switch. “The healthy cells will also receive the prodrug and ideally it will remain in its nontoxic form. Our hope is that this strategy will kill more cancer cells while decreasing the unfortunate side effects on healthy cells.”

To establish that these switches can work, the research team effectively assessed them on human colon cancer and breast cancer cells in Dr. Ostermeier’s lab and in the laboratory of Dr. James R. Eshleman, a professor of pathology and oncology in the Johns Hopkins School of Medicine. “This is a radically different tool to attack cancers,” said Dr. Eshleman, a coauthor of the PNAS journal article, “but many experiments need to be done before we will be able to use it in patients.

The next step is animal testing, expected to begin within one year, according to Dr. Ostermeier. His team made the cancer-fighting switch by fusing together two different proteins. One protein detects a marker that cancer cells produce. The other protein, from yeast, can turn an inactive prodrug into a cancer-cell killer. “When the first part of the switch detects cancer, it tells its partner to activate the chemotherapy drug, destroying the cell,” Dr. Ostermeier stated.

In order for this switch to work, it must first get inside the cancer cells. Dr. Ostermeier reported that this could be done through a technique in which the switch gene is delivered inside the cell. The switch gene serves as the blueprint from which the cell’s own machinery constructs the protein switch. Another strategy, he said, would be to develop methods to deliver the switch protein itself to cells. Once the switches are in place, the patient would receive the inactive chemotherapy drug, which would turn into a cancer attacker inside the cells where the switch has been turned on.

Although many researchers are developing methods to deliver anticancer drugs specifically to cancer cells, Dr. Ostermeier noted that the protein switch approach avoids problems encountered in those methods. “The protein switch concept changes the game by providing a mechanism to target production of the anticancer drugs inside cancer cells instead of targeting delivery of the anticancer drug to cancer cells,” he said.

Related Links:
Johns Hopkins University



Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Staining Management Software
DakoLink
New
Pan-Cancer Panel
TruSight Oncology 500
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.