We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Candidate Cancer Drug Blocks Proteins That Inhibit Apoptosis

By LabMedica International staff writers
Posted on 13 Apr 2011
An orally deliverable drug that blocks the activity of proteins that prevent cells from entering apoptosis has been found to shrink tumors significantly in animals with only minimal side effects.

The drug, AT-406, mimics the action of the protein Smac (second mitochondria-derived activator of caspases), a mitochondrial protein that enables apoptosis, possibly by neutralizing one or more members of the IAP family of apoptosis inhibitory proteins. More...
The inhibitors of apoptosis (IAP) are a family of functionally- and structurally-related proteins, which serve as endogenous inhibitors of programmed cell death. The human IAP family consists of at least six members, and IAP homologs have been identified in numerous organisms.

Smac has been shown to exit mitochondria and enter the cytosol during apoptosis triggered by UV- or gamma-irradiation. In the cytosol Smac moderates the caspase inhibition of IAPs.

Investigators at the University of Michigan (Ann Arbor, USA) first synthesized AT-406 in 2006. Since then they have demonstrated that the drug blocked IAP activity in a variety of cell free systems. In the current study, which was published in the March 28, 2011, issue of the Journal of Medicinal Chemistry, they examined the effect of AT-406 on human cancer cells growing in culture and on tumors in animal models.

They found that the drug inhibited cancer cell growth in various human cancer cell lines. It had good oral bioavailability in mice, rats, nonhuman primates, and dogs, was highly effective in induction of apoptosis in xenograft tumors, and was capable of complete inhibition of tumor growth.

"Removing key apoptosis blockades in tumor cells is a completely new cancer therapeutic approach and could have benefit for the treatment of many types of human tumors,” said senior author Dr. Shaomeng Wang, professor of medicine at the University of Michigan.

Patent applications covering the drug are exclusively licensed to Ascenta Therapeutics (Malvern, PA, USA), a privately held, clinical stage biopharmaceutical company cofounded by Dr. Wang. After extensive testing, in 2010 Ascenta began the first clinical trial of AT-406 as a potential cancer treatment.

Related Links:

University of Michigan
Ascenta Therapeutics



New
Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
New
Blood Glucose Test Strip
AutoSense Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Platelets sequester cfDNA during circulation (Murphy L. et al., Science, 2025; DOI: 10.1126/science.adp3971)

Platelets Could Improve Early and Minimally Invasive Detection of Cancer

Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more

Immunology

view channel
Image: Prof. Nicholas Schwab has found a biomarker that can predict treatment outcome of glatirameracetate in MS patients (Photo courtesy of Uni MS - M. Ibrahim)

Simple Genetic Testing Could Predict Treatment Success in Multiple Sclerosis Patients

Multiple sclerosis (MS) patients starting therapy often face a choice between interferon beta and glatiramer acetate, two equally established and well-tolerated first-line treatments. Until now, the decision... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
Image: (A) Normal skin and (B) possible pathology in ALS skin (Photo courtesy of Biomolecules and Biomedicine (2025) DOI: 10.17305/bb.2025.12100)

Skin-Based Biomarkers to Enable Early Diagnosis of Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that damages motor neurons in the brain and spinal cord, causing muscle weakness, paralysis, and death within three to five... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.