We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Water-Soluble Peptides with Stable Helical Structure Are Potential Nanoparticle Carriers

By LabMedica International staff writers
Posted on 15 Mar 2011
A paper describes the synthesis of peptides with stable helical structure that may serve as nanoparticle carriers for drug and gene delivery.

Water-soluble peptides with stable helical structure are of interest to protein chemists because of their importance in basic science and their broad utility in medicine and biotechnology. More...
Incorporating charged amino-acid residues to improve peptide solubility, however, usually leads to reduced helical stability because of increased side-chain charge repulsion, reduced side-chain hydrophobicity, and the disruption of intramolecular hydrogen bonding.

In the current study, published in the February 22, 2011, online edition of the journal Nature Communications, investigators at the University of Illinois (Urbana-Champaign, USA) showed that water-soluble, ultra-stable alpha-helical polypeptides could be produced by elongating charge-containing amino-acid side chains to position the charges far removed from the polypeptide backbone. As the length of the side chains with charges on the end increased, the tendency of the polypeptides to form helices also increased. The helices prepared by this method displayed remarkable stability even when compared to noncharged helices and were resistant to temperature, pH, and other denaturing agents that would denature most polypeptides.

"You can achieve the helical structure and the solubility but you have to design the helical structure in a very special way. The peptide design needs a very specific sequence. Then you are very limited in the type of polypeptide you can build, and it is not easy to design or handle these polypeptides,” said senior author Dr. Jianjun Cheng, professor of materials science and engineering at the University of Illinois. "It is such a simple idea – move the charge away from the backbone. It is not difficult at all to make the longer side chains, and it has amazing properties for winding up helical structures simply by pushing the distance between the charge and the backbone.”

"We want to test the correlation of the lengths of the helices and the circulation in the body to see what is the impact of the shape and the charge and the side chains for clearance in the body,” said Dr. Cheng. "Recent studies show that the aspect ratio of the nanostructures – spherical structures versus tubes – has a huge impact on their penetration of tumor tissues and circulation half-lives in the body.”

Related Links:

University of Illinois




Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.