Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Natural Plant Compound Fights Inflammation

By LabMedica International staff writers
Posted on 04 Jan 2011
Researchers have discovered how abscisic acid, a natural plant hormone with known beneficial properties for the treatment of disease, helps combat inflammation. More...
The findings reveal significant new drug targets for the development of treatments for inflammatory and immune-mediated diseases.

The scientists, from Virginia Bioinformatics Institute at Virginia Tech (Blacksburg, USA), published their results in the November 2010 issue of the Journal of Biological Chemistry. They had reported some of the major molecular events in the immune system of mice that contribute to inflammation-related disease, including the involvement of a specific molecule found on the surface of immune cells involved in the body's fight against infection. They have now gone a step further and revealed the process by which the natural drug abscisic acid interacts with this protein, known as peroxisome proliferator-activated receptor-gamma, to block inflammation and the consequent onset of disease.

"In previous work, our research group demonstrated that abscisic acid has beneficial effects on several conditions and diseases including obesity-related inflammation, diabetes, atherosclerosis, and inflammatory bowel disease," said Dr. Josep Bassaganya-Riera, associate professor of immunology at the Virginia Bioinformatics Institute, leader of the Nutritional Immunology and Molecular Medicine Group in the institute's cyberInfrastructure division, and lead investigator of the study. "One idea for how abscisic acid reduces inflammation in these instances is that it binds to a special region of peroxisome proliferator-activated receptor-gamma, a binding site known as the ligand-binding domain where the drug would be expected to latch on to and exert its effect. Our results show that this is not the case and, for the first time, we have demonstrated that abscisic acid works independently of this ligand-binding domain of the receptor."

"The outcomes of this research illustrate the synergism that can result from combining computational and experimental approaches to characterize therapeutic targets," said Dr. David Bevan, associate professor of biochemistry at Virginia Tech. "By using molecular modeling approaches we were able to identify a potential binding site for abscisic acid on the lanthionine synthetase C-like 2 protein, a protein required for the beneficial health effects of abscisic acid. We were also able, again using docking studies, to reveal reasons for the lack of direct association of abscisic acid with peroxisome proliferator-activated receptor-gamma, which was experimentally validated by ligand-binding assays."

"This information is significant because it suggests the existence of new therapeutic targets or alternative modes of action that account for the effects of abscisic acid in the immune system," added Dr. Bassaganya-Riera. "Drugs that bind to the ligand-binding domain of peroxisome proliferator-activated receptor-gamma such as Avandia are associated with severe cardiovascular side effects. In contrast, the newly discovered alternative mechanism of peroxisome proliferator-activated receptor-gamma activation by abscisic acid does not appear to be linked to any known adverse side effects, thereby representing a promising new therapeutic avenue."

"Lanthionine synthetase C-like 2 represents the first step in a pathway leading to activation of peroxisome proliferator-activated receptor-gamma in immune cells by abscisic acid," said Dr. Raquel Hontecillas, assistant professor of immunology at the Virginia Bioinformatics Institute and one of the lead investigators of the study. "We have also shown that abscisic acid affects the expression of several genes involved in inflammation, metabolism and cell signaling, which provides further clues for possible intervention points in the treatment of inflammatory and immune-mediated diseases."

The researchers plan to isolate more closely some of the new drug targets in the molecular network of the immune response as they continue to dissect the way that the naturally occurring drug abscisic acid reduces damage due to inflammation. Moreover, this new understanding on how abscisic acid works will be used to develop new classes of drugs that target the same alternative pathway of peroxisome proliferator-activated receptor-gamma activation, a potentially safer method than the use of drugs that target direct binding to the receptor.

Related Links:
Virginia Bioinformatics Institute at Virginia Tech



Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Rapid Molecular Testing Device
FlashDetect Flash10
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.