We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New Innovation in Genome Sequencing Technology May Dramatically Reduce Costs

By LabMedica International staff writers
Posted on 12 Jul 2010
A new collaborative agreement paves the way for a dramatic improvement in genome sequencing that may lower the cost of mapping an individual's genome to as little as US$100.

The partners in this endeavor are Roche (Basel, Switzerland), perhaps the world's largest biotechnology company and a leader in research-focused healthcare with combined strengths in pharmaceuticals and diagnostics; and IBM (Armonk, NY, USA), a major player in the fields of microelectronics, information technology, and computational biology.

The partners plan to develop a nanopore-based sequencer that will directly read and decode human DNA quickly and efficiently. More...
The target is true single molecule sequencing that will decode molecules of DNA as they are threaded through a nanometer-sized pore in a silicon chip. This approach should deliver significant advantages in cost, throughput, scalability, and speed compared to sequencing technologies currently available or in development. Ultimately, the hope is to reduce the cost of sequencing an individual's genome to between $100 and $1000.

The agreement between the companies stipulates that Roche will fund continued development of the technology at IBM and provide additional resources and expertise through collaboration with Roche's sequencing subsidiary, 454 Life Sciences. Roche will develop and market all products based on the technology.

"By merging computational biology, biotechnology, and nanotechnology skills, we are moving closer to producing a system that can quickly and accurately translate DNA into medically-relevant genetic information," said Ajay Royyuru, senior manager of the computational biology department at IBM. "The challenge of all nanopore-based sequencing technologies is to slow and control the motion of the DNA through the nanopore. We are developing the technology to achieve this so that the reader can accurately decode the DNA sequence."

"Sequencing is an increasingly critical tool for personalized healthcare. It can provide the individual genetic information necessary for the effective diagnosis and targeted treatment of diseases," explained Manfred Baier, head of Roche applied science. "We are confident that this powerful technology - plus the combined strengths of IBM and Roche – will make low-cost whole genome sequencing and its benefits available to the marketplace faster than previously thought possible."

Related Links:
Roche
IBM


New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gel Cards
DG Gel Cards
New
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Platelets sequester cfDNA during circulation (Murphy L. et al., Science, 2025; DOI: 10.1126/science.adp3971)

Platelets Could Improve Early and Minimally Invasive Detection of Cancer

Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.