We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Smaller Gene Therapy Vector Protects Cells from Radiation Damage

By Biotechdaily staff writers
Posted on 12 Jun 2007
Researchers from two U.S. More...
universities have developed a new, smaller gene therapy vector that may be effective in delivering a radioprotective enzyme systemically throughout the body that may spare healthy tissues the long-term consequences of therapeutic irradiation.

The study's findings were presented by researchers from the University of Pittsburgh School of Medicine (PA, USA) and Stanford University (Stanford, CA, USA) at the 10th annual meeting of the American Society of Gene Therapy held May 30 to June 3, 2007, in Seattle, WA, USA. Combined with intensive chemotherapy, high dose whole-body irradiation frequently is given to patients with blood and lymphatic cancers to destroy their bone marrow cells prior to subsequent transplantation of hematopoietic stem cells, bone marrow stem cells, or peripheral blood progenitor stem cells. However, there is increasing apprehension that such high doses of radiation may have long-term deleterious effects on healthy tissues and organs, such as the kidney, liver, and thyroid gland.

Based on earlier studies demonstrating that intravenous gene therapy delivery of the enzyme manganese superoxide dismutase (MnSOD) could protect mice from whole body irradiation, and in preparation for a potential clinical trial of systemic MnSOD in humans, the University of Pittsburgh and Stanford researchers, led by Joel S. Greenberger, M.D., professor and chair of the department of radiation oncology, University of Pittsburgh School of Medicine, delivered the human MnSOD enzyme into mouse hematopoietic progenitor cells utilizing a newly constructed gene therapy vector called a "minicircle” plasmid.

To determine if the cells transfected with the MnSOD minicircle plasmid retained radioprotective capacity, the investigators irradiated those cells as well as another cell line transfected with MnSOD in a full-sized plasmid. They also irradiated a parent mouse cell line that had not been transfected with MnSOD. After irradiation, the cells were plated in a growth medium and incubated at body temperature for seven days, at which time colonies of greater than 50 cells were counted.

The MnSOD transfected cells were considerably more resistant to ionizing radiation than the non-tranfected cells. However, there was no significant difference in survival between MnSOD-minicircle and MnSOD full plasmid transfected cells. According to Dr. Greenberger, whose group is currently conducting a phase I/II clinical trial in lung cancer patients consisting of twice-weekly swallowed MnSOD for protection of the esophagus from chemoradiotherapy damage, these findings suggest that minicircle DNA containing the human MnSOD transgene confers undiminished radioprotection to cells.

"Because we now can deliver MnSOD in this very small vector, we will be able to get this radioprotective enzyme more efficiently into all of the cells of the body and give patients receiving total body radiation for systemic cancers better long-term outcomes. This also has implications for the prophylactic protection of those who may be the first responders to a nuclear accident or a terrorist attack, such as a ‘dirty bomb,'” Dr. Greenberger explained.


Related Links:
University of Pittsburgh School of Medicine
Stanford University

New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Alcohol Testing Device
Dräger Alcotest 7000
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.