We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App





New Highly Sensitive Blood Test Accurately Measures Immunity Against SARS-CoV-2

By LabMedica International staff writers
Posted on 16 Jul 2021
Print article
Image: New Highly Sensitive Blood Test Accurately Measures Immunity against SARS-CoV-2 (Photo courtesy of EPFL / Alain Herzog 2021)
Image: New Highly Sensitive Blood Test Accurately Measures Immunity against SARS-CoV-2 (Photo courtesy of EPFL / Alain Herzog 2021)
A team of researchers have developed a new test that is sensitive enough to measure the amount of SARS-CoV-2 neutralizing antibodies present in the bloodstream.

The discovery by scientists at the Lausanne University Hospital (CHUV; Lausanne, Switzerland) and EPFL (École polytechnique fédérale de Lausanne; Switzerland) opens up promising new avenues for tracking immunity acquired by infection or vaccination. With this test, experts can measure the level of protection against variants of the virus and monitor their prevalence over time.

Blood tests detect the presence of antibodies against an infectious agent, such as SARS-CoV-2, in a patient’s bloodstream. Some antibodies simply indicate whether the individual has been previously exposed to either the virus or a vaccine, while others – known as neutralizing antibodies – provide immunity against infection or re-infection. In the case of SARS-CoV-2, neutralizing antibodies work by interfering with the virus’ spike protein, which is the key that the virus uses to enter respiratory system cells by binding to the ACE2 receptors on the cells’ surface.

The new antibody test is a highly sensitive and extremely accurate way of measuring how well a sample of blood serum can prevent the spike protein in its trimeric form – as found on the surface of the SARS-CoV-2 virus – from binding to ACE2 receptors. It completes the diagnostic arsenal in development at EPFL, which also includes the microchip device presented two months ago. Because the new method requires a simple blood test, it can be deployed easily on a large scale. The test results show whether a patient has developed immunity against one or more variants of SARS-CoV-2.

Related Links:
Lausanne University Hospital
EPFL


Gold Member
Universal Transport Solution
Puritan®UniTranz-RT
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Chlamydia Trachomatis Assay
Chlamydia Trachomatis IgG
New
Hemoglobin/Haptoglobin Assay
IDK Hemoglobin/Haptoglobin Complex ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: A one-step confirmatory laboratory test could definitively diagnose active syphilis infection within 10 minutes (Photo courtesy of Adobe Stock)

First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes

In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.