Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Novel Drug Candidate Reverses Arthritic Bone Loss in Models

By LabMedica International staff writers
Posted on 21 Feb 2018
A small molecule drug candidate was found to induce bone regeneration and reduce inflammation in various rat osteoarthritis models.

Human adult articular cartilage (AC) has little capacity for repair, and joint surface injuries often result in the development of osteoarthritis (OA), which is characterized by loss of bone matrix, hypertrophy, and chondrocyte apoptosis. More...
Inflammation mediated by interleukin (IL)-6 family cytokines has been identified as a critical driver of pro-arthritic changes in mouse and human joints, resulting in a feed-forward process driving expression of matrix degrading enzymes and IL-6 itself.

Investigators at the University of Southern California (Los Angeles, USA) sought potential drug candidates that would be able to reverse the inflammatory and degenerative effects of osteoarthritis while promoting regeneration and healing of bone and cartilage.

Towards this end, they used a high-throughput screening technique to identify a small molecule gp130 modulator from more than 170,000 candidate compounds. Gp130 is a transmembrane protein, which is the founding member of the class of all cytokine receptors. It forms one subunit of the type I cytokine receptor within the IL-6 receptor family. It is often referred to as the common gp130 subunit, and is important for signal transduction following cytokine engagement.

When tested on cultures of joint cartilage cells, the gp130 modulator, which was named RCGD 423 (regulator of cartilage growth and differentiation), caused increased cell proliferation and reduced the number of dying cells.

The investigators further reported in the February 2018 issue of the journal Annals of Rheumatic Diseases that in a rat partial meniscectomy model, RCGD 423 greatly reduced chondrocyte hypertrophy, loss, and degeneration while increasing chondrocyte proliferation beyond that observed in response to injury. Moreover, RCGD 423 improved cartilage healing in a rat full-thickness osteochondral defect model, increasing proliferation of mesenchymal cells in the defect and also inhibiting breakdown of cartilage matrix in de novo generated cartilage.

"The goal is to make an injectable therapy for an early to moderate level of arthritis," said senior author Dr. Denis Evseenko, associate professor of orthopedic surgery at the University of Southern California. "It is not going to cure arthritis, but it will delay the progression of arthritis to the damaging stages when patients need joint replacements, which account for a million surgeries a year in the United States."

Related Links:
University of Southern California


New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hybrid Pipette
SWITCH
Rapid Molecular Testing Device
FlashDetect Flash10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.