We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Nanoparticles May Lead to Universal Antiviral Drug

By LabMedica International staff writers
Posted on 02 Jan 2018
Print article
Image: A molecular dynamics model showing a nanoparticle binding to the outer envelope of the human papillomavirus (Photo courtesy of Dr. Petr Kral, Ecole Polytechnique Fédérale de Lausanne).
Image: A molecular dynamics model showing a nanoparticle binding to the outer envelope of the human papillomavirus (Photo courtesy of Dr. Petr Kral, Ecole Polytechnique Fédérale de Lausanne).
A team of molecular virologists has developed a nanoparticle-based broad-spectrum antiviral agent that binds irreversibly to a large range of viruses and causes lethal structural deformations without affecting healthy tissue.

Available antiviral drugs are virus-specific and active against a limited panel of human pathogens. There are broad-spectrum substances that prevent the first step of virus–cell interaction by mimicking heparan sulfate proteoglycans (HSPG), the highly conserved target of viral attachment ligands (VALs). However, the reversible binding mechanism prevents their use as a drug, because, upon dilution, the inhibition is lost. Known VALs are made of closely packed repeating units, but the aforementioned substances are able to bind only a few of them.

To avoid the reversible binding problem, investigators at Ecole Polytechnique Fédérale de Lausanne (Switzerland) designed antiviral nanoparticles with long and flexible linkers that mimicked HSPG. These novel nanoparticles simulated the VAL repeating units and enabled strong and multivalent viral association that eventually led to irreversible viral deformation.

The investigators reported in the December 18, 2017, online edition of the journal Nature Materials that the efficacy of this proposed mechanism was supported by virucidal assays, electron microscopy images, and molecular dynamics simulations. The particles showed no cytotoxicity, and in vitro irreversibly blocked the activity of herpes simplex virus (HSV), human papilloma virus, respiratory syncytial virus (RSV), dengue, and Lentivirus. In addition the particles were active in vitro in human cervicovaginal histocultures infected by HSV-2 and in vivo in mice infected with RSV.

Related Links:
Ecole Polytechnique Fédérale de Lausanne

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Cytomegalovirus Real-Time PCR Test
Quanty CMV Virus System
New
Alpha-Fetoprotein Reagent
AFP Reagent Kit

Print article

Channels

Clinical Chemistry

view channel
Image: Professor Nicole Strittmatter (left) and first author Wei Chen stand in front of the mass spectrometer with a tissue sample (Photo courtesy of Robert Reich/TUM)

Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication

Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more

Molecular Diagnostics

view channel
Image: Macrophages infected with mycobacterium tuberculosis (Photo courtesy of MIT)

New Molecular Label to Help Develop Simpler and Faster Tuberculosis Tests

Tuberculosis (TB), the deadliest infectious disease globally, is responsible for infecting an estimated 10 million people each year and causing over 1 million deaths annually. While chest X-rays and molecular... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.