Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Transcriptomic Biomarker Assay Developed for Genetic Toxicology Testing

By LabMedica International staff writers
Posted on 20 Dec 2017
A new in vitro test was designed to solve the problem of false positive results that are frequently obtained when evaluating chemical compounds and potential drugs for their potential to cause genetic damage.

Standard in vitro assays to assess genotoxicity frequently generate positive results that are subsequently found to be irrelevant for in vivo carcinogenesis and human cancer risk assessment. More...
Currently used follow-up methods, such as animal testing, are expensive and time-consuming, and the development of approaches enabling more accurate mechanism-based risk assessment is essential.

Toward this end, investigators at Georgetown University (Washington, DC, USA) developed an in vitro transcriptomic biomarker-based approach to provide biological relevance to positive genotoxicity assay data, particularly for in vitro chromosome damage assays. Transcriptomics technologies incorporate the techniques used to study an organism’s transcriptome, the sum of all of its RNA transcripts. For this work the transcriptomic biomarker TGx-DDI (previously known as TGx-28.65), which readily distinguishes DNA damage-inducing (DDI) agents from non-DDI agents was used. The TGx-DDI gene set was derived from TK6 cells exposed to a training set of prototypical DNA damage-inducing agents and chemicals with a clean genetic toxicology profile (28 chemicals: 13 DNA damage-inducing, 15 non DNA-damage inducing).

The investigators assessed the ability of this biomarker to classify 45 test agents across a broad set of chemical classes as DDI or non-DDI. In addition, they assessed the biomarker’s utility for correctly classifying the risk of known irrelevant positive agents and evaluated its performance across analytical platforms.

They reported in the December 4, 2017, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences that they had developed a standardized experimental and analytical protocol for the transcriptomics biomarker, as well as an enhanced application of TGx-DDI for high-throughput cell-based genotoxicity testing. Furthermore, they correctly classified 90% (nine of 10) of chemicals with irrelevant positive findings for in vitro chromosome damage assays as negative.

"The lack of an accurate, rapid and high-throughput test that assesses genotoxicity has been a major bottleneck in the development of new drugs as well as the testing of substances by chemical, cosmetic, and agricultural companies," said senior author Dr. Albert J. Fornace Jr., professor of biochemistry and molecular and cellular biology, oncology, and radiation medicine at Georgetown University. “In addition, there is an increasing mandate to reduce animal testing. Compared to older tests, our approach allows for very accurate and high-throughput screening of chemical compounds that cause DNA damage, and potentially, cancer in humans.”

Related Links:
Georgetown University


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gel Cards
DG Gel Cards
Automatic Hematology Analyzer
DH-800 Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.