Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Computer Program Confirms Relationship of cfDNA and Tumor DNA

By LabMedica International staff writers
Posted on 16 Nov 2017
Cancer researchers have developed an accurate, scalable approach for monitoring cell-free tumor DNA from blood samples.

Development of this approach was based on the hypothesis that whole-exome sequencing of cell-free DNA (cfDNA) could enable comprehensive profiling of tumors from blood. More...
However, the genome-wide concordance between cfDNA in blood samples and tumor biopsies was uncertain.

To confirm the relationship between cfDNA in the blood and DNA from cancer cells in tumors, investigators at the Broad Institute of the Massachusetts Institute of Technology and Harvard University (Cambridge, MA, USA) developed ichorCNA, a computer program able to analyze DNA fragments for mutation patterns nearly universal in cancer genomes, and as a result able to identify cancers with both known and unknown mutations. The ichorCNA, software quantified tumor content in cfDNA from 0.1× coverage whole-genome sequencing data without prior knowledge of tumor mutations.

The investigators reported in the November 6, 2017, online edition of the journal Nature Communications, that they used ichorCNA to analyze 1439 blood samples from 520 patients with metastatic prostate or breast cancers. In the earliest tested sample for each patient, 34% of patients had at least 10% tumor-derived cfDNA, sufficient for standard coverage whole-exome sequencing.

Using whole-exome sequencing, the investigators validated the concordance of clonal somatic mutations (88%), copy number alterations (80%), mutational signatures, and neoantigens between cfDNA and matched tumor biopsies from 41 patients that had more than 10% tumor cfDNA in the serum.

"Our study has demonstrated that we can get a cancer whole exome reliably, from blood; that it reflects the matched tumor biopsy; and that it can be done for a significant fraction of patients with metastatic cancer," said first author Dr. Viktor Adalsteinsson, leader of the blood biopsy team at the Broad Institute. "This validation suggests that we can use blood biopsies for large-scale genomic characterization of disease in patients with metastatic cancer. Our ultimate hope is to use blood biopsies to exhaustively search for and characterize even the smallest remnants of tumors, and, as tumors evolve in more advanced stages of cancer, developing resistance or becoming metastatic, we might access time points that could be pivotal in deciding which therapies are right for that patient."

Related Links:
Broad Institute


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.