We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Progress Reported in Development of Gene Editing Tool

By LabMedica International staff writers
Posted on 21 Aug 2017
Print article
Image: Photomicrographs of muscle cells from a patient with myotonic dystrophy type I, untreated (left) and treated with the RNA-targeting Cas9 system (right). The MBNL1 protein is in green, repetitive RNA in red and the cell\'s nucleus in blue (Photo courtesy of the University of California, San Diego).
Image: Photomicrographs of muscle cells from a patient with myotonic dystrophy type I, untreated (left) and treated with the RNA-targeting Cas9 system (right). The MBNL1 protein is in green, repetitive RNA in red and the cell\'s nucleus in blue (Photo courtesy of the University of California, San Diego).
Progress has been reported in the effort to develop a CRISPR/Cas9 gene editing tool to be used for modifying RNA rather than the usual target DNA.

CRISPR/Cas9 is regarded as the cutting edge of molecular biology technology. CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. CRISPRs are found in approximately 40% of sequenced bacteria genomes and 90% of sequenced archaea. CRISPRs are often associated with cas genes that code for proteins related to CRISPRs.

Since 2013, the CRISPR/Cas9 system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides that shepherd the Cas9 protein to the target gene on a DNA strand. In 2016, investigators at the University of California, San Diego (USA) reported the design of an RNA-targeting Cas9 (RCas9).

Microsatellite repeat expansions in DNA produce pathogenic RNA species that cause dominantly inherited diseases such as myotonic dystrophy type 1 and 2 (DM1/2), Huntington’s disease, and C9orf72-linked amyotrophic lateral sclerosis (C9-ALS). Means to target these repetitive RNAs are required for diagnostic and therapeutic purposes.

In a study published in the August 10, 2017, online edition of the journal Cell, the University of California, San Diego investigators described the development of a programmable CRISPR system capable of specifically visualizing and eliminating these toxic RNAs. RCas9 worked similarly to the regular CRISP/Cas9 editing tool, but the guide RNA directed the Cas9 enzyme to an RNA molecule instead of DNA.

The investigators reported that RCas9 eliminated 95% or more of the RNA foci linked to myotonic dystrophy type 1 and type 2, C9-ALS, and Huntington's disease. The approach also eliminated 95% of the aberrant repeat RNAs in myotonic dystrophy patient cells cultures.

In another step forward, the investigators produced a truncated version of Cas9 that could be packaged into an adeno-associated virus transport vehicle. This smaller version of Cas9 was created by deleting regions of the protein that were necessary for DNA cleavage, but dispensable for binding RNA.

"This is exciting because we are not only targeting the root cause of diseases for which there are no current therapies to delay progression, but we have re-engineered the CRISPR/Cas9 system in a way that is feasible to deliver it to specific tissues via a viral vector," said senior author Dr. Gene Yeo, professor of cellular and molecular medicine at the University of California, San Diego. "The main thing we do not know yet is whether or not the viral vectors that deliver RCas9 to cells would elicit an immune response. Before this could be tested in humans, we would need to test it in animal models, determine potential toxicities and evaluate long-term exposure."

Related Links:
University of California, San Diego

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Pipet Controller
Stripettor Pro
New
Creatine Kinase-MB Assay
CK-MB Test

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.