Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Interaction of Cell Surface Glycoproteins Drives Tumor Metastasis

By LabMedica International staff writers
Posted on 16 Aug 2017
Cancer researchers have shown how the interaction between two classes of cell surface glycoprotein molecules determines when a tumor will metastasize and release cells that migrate and generate secondary growths.

Cells in a low-grade tumor bind very tightly together, however the cells become less adhesive as the tumor becomes malignant. More...
Expression of the cell adhesion molecule (CAM), Sialyl Lewis X (CD15s) correlates with cancer metastasis, while expression of E-selectin (CD62E) is stimulated by the cytokine TNF-alpha. CD15s/CD62E interaction plays a key role in the homing process of circulating leukocytes.

Investigators at the University of Portsmouth (United Kingdom) investigated the interaction of CD15s and CD62E in brain metastasis-related cancer cell adhesion. CD15s and CD62E were characterized in human brain endothelium (hCMEC/D3), primary non-small cell lung cancer (NSCLC), and metastatic NSCLC using immunocytochemistry, Western blotting, flow cytometry, and immunohistochemistry in human brain tissue sections.

They reported in the July 10, 2017, online edition of the International Journal of Molecular Sciences that CD15s was only faintly expressed on hCMEC/D3, while high levels were observed on primary NSCLC cells with expression highest on metastatic NSCLC cells. CD62E was highly expressed on hCMEC/D3 cells activated with TNF-alpha, with lower levels on primary and metastatic NSCLC cells. CD15s and CD62E were expressed on lung metastatic brain biopsies. CD15s/CD62E interaction was localized at adhesion sites of cancer cell - brain endothelium. Immune blocking of CD15s significantly decreased cancer cell adhesion to brain endothelium under static and shear stress conditions, highlighting the role of CD15s - CD62E interaction in brain metastasis.

Senior author Dr. Geoff Pilkington, head of the Brain Tumour Research Centre at the University of Portsmouth, said, "Although this work is still at an early stage, we have demonstrated key elements that are associated with tumor cell binding to blood vessels and this may provide a target for future drug development to prevent the development of secondary tumors in the brain. Increasing our understanding of the adhesive properties of tumors may also help to develop new treatments to halt the development and spread of primary brain tumors."

Related Links:
University of Portsmouth


New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Collection and Transport System
PurSafe Plus®
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.