Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




LDL Receptor Expression Differentiates Myeloid-Derived Cells from Neutrophils

By LabMedica International staff writers
Posted on 17 Aug 2016
Cancer researchers have identified a surface protein marker on myeloid-derived suppressor cells (MDSCs) that differentiates them from normal neutrophils and may be a potential therapeutic target.

Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) are important regulators of immune responses in cancer and have been directly implicated in the promotion of tumor progression. More...
However, understanding the biology and clinical importance of these cells has been hampered by a lack of markers that set them apart from normal neutrophils.

To find a marker to differentiate MDSCs from normal neutrophils, investigators at the Wistar Institute (Philadelphia, PA, USA) partially enriched a PMN-MDSC fraction with gradient centrifugation and then determined that low-density PMN-MDSC and high-density neutrophils from the same cancer patients had a distinct gene profile.

The most prominent changes were observed in the expression of genes associated with endoplasmic reticulum (ER) stress. Low-density lipoprotein (LDL) was one of the most increased regulators, and its receptor - lectin-type oxidized LDL receptor-1 (LOX-1) - was one of the most overexpressed genes in PMN-MDSC. The Lox-1 receptor protein binds, internalizes, and degrades oxidized LDL.

Results published in the August 5, 2016, online edition of the journal Science Immunology revealed that Lox-1, encoded by the OLR1 gene, was practically undetectable in neutrophils in peripheral blood of healthy donors, whereas 5 to 15% of total neutrophils in cancer patients and 15 to 50% of neutrophils in tumor tissues were Lox-1 positive. Exposing neutrophils from healthy individuals to endoplasmic reticulum stress resulted in up-regulation of Lox-1 with subsequent increase in immune suppressive function.

“Before we started this work, the only way to isolate PMN-MDSCs was by density centrifugation of blood because they could not be properly identified in tumor tissue,” said senior author Dr. Dmitry I. Gabrilovich, leader of the translational tumor immunology program at the Wistar Institute. “Identifying a marker for PMN-MDSCs will allow us to study these cells in much more depth. In addition, if our clinical results are verified in larger studies, the marker could also be used to help physicians and patients make informed treatment decisions and, ultimately, it could be exploited to target PMN-MDSCs for therapeutic benefit.”

Related Links:
Wistar Institute



Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
8-Channel Pipette
SAPPHIRE 20–300 µL
Hemodynamic System Monitor
OptoMonitor
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.