Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Loss of Mitochondrial Fusion Enzyme Linked to Age-Related Loss of Muscle Mass

By LabMedica International staff writers
Posted on 06 Jul 2016
The enzyme mitofusin 2 (Mfn2) was shown to play a key role in the control of age-related muscle mitochondrial damage.

Mitochondrial dysfunction and the accumulation of damaged mitochondria are considered major contributors to the loss of muscle mass (sarcopenia) that comes with aging. More...
However, the molecular mechanisms responsible for these mitochondrial alterations have not been clarified.

When cells experience metabolic or environmental stresses, mitochondrial fusion and fission work to maintain functional mitochondria. An increase in fusion activity leads to mitochondrial elongation, whereas an increase in fission activity results in mitochondrial fragmentation. The components of this process can influence programmed cell death and lead to neurodegenerative disorders such as Parkinson's disease. The shapes of mitochondria are continually changing through the combination of fission, fusion, and motility. Specifically, fusion assists in modifying stress by integrating the contents of slightly damaged mitochondria as a form of complementation. By enabling genetic complementation, fusion of the mitochondria allows for two mitochondrial genomes with different defects within the same organelle to individually encode what the other lacks. In doing so, these mitochondrial genomes generate all of the necessary components for a functional mitochondrion.

Investigators at the Institute for Research in Biomedicine (Barcelona, Spain) reported in the June 22, 2016, online edition of The EMBO Journal that the enzyme mitofusin 2 (Mfn2) played a key role in the control of muscle mitochondrial damage. They demonstrated that aging was characterized by a progressive loss of Mfn2 activity in mouse skeletal muscle and that removal of Mfn2 from skeletal muscle generated a gene signature linked to aging.

Analysis of muscle from mice lacking Mfn2 revealed that aging-induced Mfn2 decrease contributed to age-related alterations in metabolic homeostasis and sarcopenia. Mfn2 deficiency reduced autophagy and impaired mitochondrial quality, which contributed to exacerbated age-related mitochondrial dysfunction.

On the other hand, aging-induced Mfn2 deficiency triggered a ROS (reactive oxygen species)-dependent adaptive signaling pathway that compensated somewhat for the loss of mitochondrial autophagy and minimized mitochondrial damage.

"Sarcopenia is not a minor issue because it impedes some elderly people from going about their everyday lives," said senior author Dr. Antonio Zorzano, head of the Complex Metabolic Diseases and Mitochondria Laboratory at the Institute for Research in Biomedicine. "If we want to boost the health of the elderly then this problem has to be addressed."

Related Links:
Institute for Research in Biomedicine



Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gel Cards
DG Gel Cards
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.