Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Drugs That Block Sulfur Metabolism Show Potential for Treating Latent Tuberculosis

By LabMedica International staff writers
Posted on 14 Dec 2015
Drugs that target sulfur metabolism have been found to have potential for treating latent tuberculosis infections, including those caused by drug-resistant forms of the bacteria.

Sulfur metabolism is genetically and pharmacologically implicated in survival, pathogenesis, and redox homeostasis of persistent Mycobacterium tuberculosis (Mtb). More...
Therefore, inhibitors of this pathway are expected to serve as powerful tools for eradicating persistent, latent Mtb infection.

Investigators at the Scripps Research Institute (Jupiter, FL, USA) and colleagues at the Indian Institute of Science (Bangalore, India) established a first functional high-throughput screening platform for identification of adenosine 5’-phosphosulfate reductase (APSR) inhibitors, a critical enzyme in the assimilation of sulfate for the biosynthesis of cysteine and other essential sulfur-containing molecules.

They reported in the November 2, 2015, online edition of the journal ACS Chemical Biology that after screening 38,350 compounds they had discovered three distinct structural classes of APSR inhibitors. A class of bioactive compounds with known pharmacology displayed potent bactericidal activity in wild-type Mtb as well as multidrug resistant (MDR) and extensively drug-resistant (XDR) clinical isolates.

M. tuberculosis infects host macrophages,” said senior author Dr. Kate Carroll, an associate professor at the Scripps Research Institute. “These immune cells produce high levels of reactive oxygen and reactive nitrogen species (RONS), which cause oxidative damage to biomolecules, such as lipids, proteins, and DNA. For this reason, M. tuberculosis depends heavily upon the production of RONS-neutralizing reduced sulfur compounds, including mycothiol and cysteine. This is why the reductive sulfur assimilation pathway is such a powerful target. Once you reduce the level of reduced sulfur compounds, you eliminate a central mechanism that all bacteria, including M. tuberculosis, use to survive host defense systems.”

“With the help of Scripps Florida’s high-throughput screening facility, we looked at nearly 40,000 compounds before we uncovered these new, potent inhibitors that attack an enzyme critical to the survival of persistent tuberculosis,” said Dr. Carroll. “Thanks to our collaborators in India with access to drug-resistant patient isolates, we were able to demonstrate that these compounds also show excellent activity against multidrug resistant (MDR) and extensively drug-resistant (XDR) strains, in addition to the standard laboratory reference strain, H37Rv, of M. tuberculosis.”

Related Links:

Scripps Research Institute
Indian Institute of Science



Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Radial Immunodiffusion Assay
Radial Immunodifusion - C3 ID
Silver Member
PCR Plates
Diamond Shell PCR Plates
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.