Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Inactivated Bacteria and Excreted Factors for Colorectal Cancer Treatment

By LabMedica International staff writers
Posted on 22 Nov 2015
Inactivated Clostridium sporogenes bacteria and medium harvested after growth of the bacteria were found to be potent inhibitors of colorectal cancer cells growing on two- and three-dimensional culture platforms.

Since they rely on oxygen molecules to damage the DNA of cancer cells, traditional cancer treatments such as chemotherapy and radiation therapy have limited efficacy for the treatment of colorectal cancer due to reduced blood flow and the lack of oxygen and nutrient flow in the tumor environment.

While bacterial cancer therapy has the potential to overcome the hypoxia problem, it comes with the risk of toxicity and infection. More...
To circumvent these issues, investigators at Nanyang Technological University (Singapore) studied the antitumor effects of non-viable bacterial derivatives of Clostridium sporogenes, an anaerobic, rod-shaped bacterium that produces oval, subterminal endospores and is commonly found in soil. Unlike C. botulinum, it does not produce the botulinum neurotoxins.

The non-viable derivatives examined in this study were heat-inactivated C. sporogenes bacteria (IB) and secreted bacterial proteins in culture media, known as conditioned media (CM). The effects of IB and CM on CT26 and HCT116 colorectal cancer cells were examined on two-dimensional and three-dimensional platforms.

Results reported in the October 28, 2015, online edition of the journal Scientific Reports revealed that IB significantly inhibited cell proliferation of CT26 cells to 6.3% of the control in 72 hours for the two-dimensional monolayer culture. In the three-dimensional spheroid culture, cell proliferation of HCT116 spheroids notably dropped to 26.2%. Similarly the CM also remarkably reduced the cell-proliferation of the CT26 cells to 2.4% and 20% in the two-dimensional and three-dimensional models, respectively. Interestingly the effect of boiled conditioned media (BCM) on the cells in the three-dimensional model was less inhibitory than that of CM.

"We found that even when the C. sporogenes bacteria is dead, its natural toxicity continues to kill cancer cells, unlike the conventional chemotherapy drugs which need oxygen to work," said senior author Dr. Teoh Swee Hin, professor of chemical and biomedical engineering at Nanyang Technological University. "While other research groups have experimented with bacteria therapy to destroy cancer cells, the biggest problem is that live bacteria will grow and proliferate, posing a high risk of infection and increased toxicity to patients. In the NTU study, as the bacteria were already killed by heat, there was no risk of the bacteria multiplying and causing more harm than the desired dose meant to kill colorectal cancer cells."

The next step will be to isolate specific bacterial components that help to kill tumor cells and to develop them into a usable therapy format.

Related Links:
Nanyang Technological University



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated MALDI-TOF MS System
EXS 3000
Laboratory Software
ArtelWare
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.