Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Salvage of DNA Precursors Is Lethal to Some Cancer Cells

By LabMedica International staff writers
Posted on 04 Aug 2015
Cancer cells overexpress the enzyme cytidine deaminase (CDA), which allows them to recycle inappropriate DNA precursors but renders them susceptible to genetic damage and cell death.

Cells require nucleotides to support DNA replication and repair damaged DNA. More...
In addition to making these DNA precursors from scratch, cells recycle nucleotides from the DNA of dying cells or from cellular material ingested through the diet. However, salvaged nucleotides come with the complication that they can contain epigenetic modifications such as being methylated or phosphorylated.

In humans, cytidine deaminase is an enzyme involved in pyrimidine salvaging that is encoded by the CDA gene. This protein forms a homotetramer that catalyzes the irreversible hydrolytic deamination of cytidine and deoxycytidine to uridine and deoxyuridine, respectively. It is one of several deaminases responsible for maintaining the cellular pyrimidine pool. Mutations in this gene are associated with decreased sensitivity to the cytosine nucleoside analogue cytosine arabinoside used in the treatment of certain childhood leukemias.

Investigators at the University of Oxford (United Kingdom) reported in the July 22, 2015, online edition of the journal Nature that in normal cells the enzymes of the nucleotide salvage pathway displayed substrate selectivity, effectively protecting newly synthesized DNA from the incorporation of epigenetically modified forms of cytosine. Thus, cell lines and animals could tolerate high doses of these modified cytidines without any deleterious effects on physiology.

In contrast, by screening cancer cell lines for growth defects after exposure to 5hmdC (5-hydroxymethyl-2′deoxycytidine), the investigators unexpectedly identified a subset of cell lines in which 5hmdC or 5fdC (5-formy-2′deoxycytidine) led to cell death. Using genomic approaches, they showed that the susceptible cell lines overexpressed CDA. CDA converted 5hmdC and 5fdC into variants of uridine that were incorporated into DNA, resulting in accumulation of DNA damage, and ultimately, cell death.

"In the past few years we and others discovered a new set of biological DNA modifications. In the current study, our research group sought to find out what happens to these modified bases when DNA is recycled," said senior author Dr. Skirmantas Kriaucionis, assistant member of the Ludwig Institute for Cancer Research at the University of Oxford. "We were excited that our biochemical analysis uncovered "loopholes," which we hope can be exploited for intervention in cancer. It has been suggested that CDA inactivates cytidine analogues that are already used in the clinic to treat some blood and pancreatic cancers. In a strikingly reverse scenario, the nucleotides that we used in our study are relatively harmless until they encounter CDA, which converts them into hostile cytotoxic agents."

Related Links:

University of Oxford



Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.