Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Japanese Researchers Demonstrate Novel Transcutaneous Influenza Vaccination Using a Dissolving Microneedle Patch

By LabMedica International staff writers
Posted on 27 Jul 2015
Vaccination via a biodegradable microneedle patch was shown to generate immune response to various strains of the influenza virus that were equal to or stronger than those induced by traditional hypodermic needle injection.

Previous attempts using microneedles made of silicon or metal were not successful primarily due to the risk of the needles breaking off in the skin, leaving tiny fragments behind. More...
To avoid this problem, investigators at Osaka University (Japan) prepared microneedle patches from hyaluronic acid, a naturally occurring and water soluble biological material. The "MicroHyala" microneedle patch was loaded with the material to be injected and then applied like a plaster. The needles pierced the top layer of skin and then dissolved into the body, taking the vaccine with them.

In the current study the investigators examined the clinical safety and efficacy of the MicroHyala vaccination method using MH (flu-MH), which contains trivalent influenza hemagglutinins (15 micrograms each). Subjects were treated transcutaneously (TCI group) with a flu-MH microneedle patch, and were compared with subjects who received subcutaneous injections (SCI group) of a solution containing 15 micrograms of each influenza antigen.

Results published in the July 2015 issue of the journal Biomaterials revealed that no severe local or systemic adverse events were detected in either group. Immune responses against A/H1N1 and A/H3N2 strains were induced equally in the TCI and SCI groups. Moreover, the efficacy of the vaccine against the B strain in the TCI group was stronger than that in the SCI group.

"Our novel transcutaneous vaccination using a dissolving microneedle patch is the only application vaccination system that is readily adaptable for widespread practical use," said senior author Dr. Shinsaku Nakagawa, professor of medical pharmacy at Osaka University. "Because the new patch is so easy to use, we believe it will be particularly effective in supporting vaccination in developing countries."

"We were excited to see that our new microneedle patch is just as effective as the needle-delivered flu vaccines, and in some cases even more effective," said Dr. Nakagawa. "We have shown that the patch is safe and that it works well. Since it is also painless and very easy for non-trained people to use, we think it could bring about a major change in the way we administer vaccines globally."

Related Links:

Osaka University



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.