Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Colon Cancer Cells Adopt Stem Cell Characteristics to Metastasize to the Liver

By LabMedica International staff writers
Posted on 12 Jul 2015
Cancer researchers have identified an interlocked set of enzyme activities, similar to those found in stem cells, expressed in colorectal cancer (CRC) cells, which confer on these cells the enhanced cellular motility required for metastasis into the liver.

Investigators at the Weizmann Institute of Science (Rehovot, Israel) worked with mouse models of colorectal cancer metastasis to the liver. More...
The first gene they linked to metastasis was L1. L1 family members are able to bind to a number of other proteins. As cell adhesion molecules, they often bind "homophilically" to themselves; for example L1 on one cell binding to L1 on an adjacent cell. L1 family members also bind "heterophilically" to members of the contactin or CNTN1 family. In addition, L1 family members bind to many cytoplasmic proteins such as ezrin-moesin-radixin (ERM) proteins and to various signaling molecules and proteins important in trafficking.

The investigators reported in the April 27, 2015, online edition of the journal Oncogene that L1 could confer enhanced motility and liver metastasis when expressed in CRC cells. This ability of L1-mediated metastasis was exerted by a mechanism involving ezrin and the activation of NF-kappaB target genes. Ezrin is a cytoplasmic peripheral membrane protein that functions as a protein-tyrosine kinase substrate in microvilli. As a member of the ERM protein family, ezrin serves as an intermediate between the plasma membrane and the actin cytoskeleton. It plays a key role in cell surface structure adhesion, migration, and organization and has been implicated in various human cancers.

In the present study, the investigators identified SMOC-2 (secreted modular calcium-binding matricellular protein-2) as a gene activated by L1-ezrin-NF-kappaB signaling. The induction of SMOC-2 expression in L1-expressing CRC cells was necessary for the increase in cell motility, proliferation under stress, and liver metastasis conferred by L1. SMOC-2 was localized at the bottom of normal human colonic crypts and at increased levels in CRC tissue with preferential expression in invasive areas of the tumor.

"This research," said senior author Dr. Avri Ben-Ze'ev, professor of genetics at the Weizmann Institute of Science, "provides support for the idea that as cancer develops, it also reverts—that is, some of its cells adopt a less mature, more stem-like, state that assists metastasis. Additional investigations into the interactions between SMOC-2 and other genes suggested that the human cancer cells were, indeed, taking on some qualities of stem cells. We hope that further research will point to ways of interfering with the activities of genes like SMOC-2, thus preventing this cancer from metastasizing. In addition, the expression patterns of SMOC-2 could make it an ideal marker for the early detection of human metastatic colorectal cancer."

Related Links:

Weizmann Institute of Science



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Capillary Blood Collection Tube
IMPROMINI M3
8-Channel Pipette
SAPPHIRE 20–300 µL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.