Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Small Interfering RNA Nanoparticles Accelerate Wound Healing in Mouse Model

By LabMedica International staff writers
Posted on 07 Apr 2015
The time required for wound healing in a mouse model was significantly shortened by treatment with nanoparticles that had been loaded with small interfering RNA (siRNA) that blocked the synthesis of the enzyme fidgetin-like 2 (FL2).

FL2, a fundamental regulator of cell migration, is a microtubule-severing enzyme that belongs to the fidgetin family, which plays varying roles in cellular development and function. More...
When active, FL2 slows the migration of cells involved in the healing process into the wound.

Investigators at Albert Einstein College of Medicine (New York, NY, USA) found that depletion of FL2 from mammalian tissue culture cells resulted in a more than two-fold increase in the rate of cell movement, due in part to a significant increase in directional motility. Immunofluorescence analyses indicated that FL2 normally localized to the cell edge, importantly to the leading edge of polarized cells, where it regulated the organization and dynamics of the microtubule cytoskeleton.

To apply these findings to live animals, the investigators facilitated the uptake of FL2-specific siRNA by utilizing a nanoparticle-based delivery platform. The siRNA caused the local depletion of FL2 in mice with both cut and burn wounds by binding to the FL2 gene's messenger RNA (mRNA), which prevented the mRNA from being translated into FL2 proteins.

The investigators reported in the March 10, 2015, online edition of the Journal of Investigative Dermatology that topical application of FL2 siRNA nanoparticles to either wound type resulted in a significant enhancement in the rate and quality of wound closure both clinically and histologically relative to controls. Taken together, these results identified FL2 as a promising therapeutic target to promote the regeneration and repair of cutaneous wounds.

"SiRNAs on their own will not be effectively taken up by cells, particularly inside a living organism" said senior author Dr. David J. Sharp, professor of physiology and biophysics at Albert Einstein College of Medicine. "They will be quickly degraded unless they are put into some kind of delivery vehicle. We saw normal, well-orchestrated regeneration of tissue, including hair follicles and the skin's supportive collagen network. Not only did the cells move into the wounds faster, but they knew what to do when they got there."

"We envision that our nanoparticle therapy could be used to speed the healing of all sorts of wounds, including everyday cuts and burns, surgical incisions, and chronic skin ulcers, which are a particular problem in the elderly and people with diabetes," said Dr. Sharp.

Related Links:

Albert Einstein College of Medicine



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gel Cards
DG Gel Cards
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.