Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Epigenomic Mapping Highlights Differences Between Ancient and Modern Humans

By LabMedica International staff writers
Posted on 05 May 2014
Molecular biologists employing advanced epigenetic techniques have identified genetic differences between Homo sapiens and extinct types of humans such as Neanderthals and Denisovans that are linked to modern diseases like Alzheimer’s disease, autism, and schizophrenia.

Epigenomics is the study of the complete set of epigenetic modifications on the genetic material of a cell, known as the epigenome. More...
The field is analogous to genomics and proteomics, which are the study of the genome and proteome of a cell. Epigenetic modifications are reversible modifications to a cell’s DNA or histones that affect gene expression without altering the DNA sequence. Two of the most characterized epigenetic modifications are DNA methylation and histone modification. Epigenetic modifications play an important role in gene expression and regulation, and are involved in numerous cellular processes such as in differentiation/development and tumorigenesis. Recent advances in high-throughput analytical technology have enabled rapid advances in epigenomic research.

The evolution of epigenetic regulation along the human lineage remains largely unexplored. To shed further light on this topic, investigators at the Hebrew University of Jerusalem (Israel) and their colleagues at the Max Planck Institute for Evolutionary Anthropology (Leipzig, Germany) reconstructed the full DNA methylation maps of the Neandertal and the Denisovan by harnessing the natural degradation processes of methylated and unmethylated cytosines.

The investigators reported in the April 17, 2014, online edition of the journal Science that by comparing these ancient methylation maps to those of present-day humans, they had identified nearly 2000 differentially methylated regions (DMRs). Particularly, they found substantial methylation changes in the HOXD cluster that may explain anatomical differences between archaic and present-day humans. Hox genes (from an abbreviation of homeobox) are a group of related genes that control the body plan of the embryo along the anterior-posterior axis. After the embryonic segments have formed, the Hox proteins determine the type of segment structures (e.g., legs, antennae, and wings in fruit flies or the different types of vertebrae in humans) that will form on a given segment.

Additionally, the investigators found that DMRs were significantly more likely to be associated with modern diseases such as Alzheimer’s disease, autism and schizophrenia, suggesting that recent epigenetic changes in brain tissues may underlie some of today's common psychiatric disorders.

The authors concluded by saying, "This study provides insight into the epigenetic landscape of our closest evolutionary relatives and opens a window to explore the epigenomes of extinct species."

Related Links:

Hebrew University of Jerusalem
Max Planck Institute for Evolutionary Anthropology



New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Rapid Molecular Testing Device
FlashDetect Flash10
8-Channel Pipette
SAPPHIRE 20–300 µL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.