Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




pH-Dependence Described for Key Membrane Bilayer Properties

By LabMedica International staff writers
Posted on 16 Oct 2013
Scientists have discovered specific pH-dependent changes in structural symmetry and density of bilayer membranes, enabling a new venue for controlled alteration of properties important for advancement of cell biology and biotechnology.

The study, an interdisciplinary collaboration between multiple Northwestern University laboratories led by principal investigators of Northwestern’s McCormick School of Engineering and Applied Science (Evanston, IL, USA), showed how crystalline order within bilayer membranes, formed from coassembled cationic- and anionic-head amphiphile molecules, can be controlled by varying pH and molecular hydrophobic-tail length. More...
“In nature, living things function at a delicate balance: acidity, temperature, all its surroundings must be within specific limits, or they die,” said Prof. Monica Olvera de la Cruz of Northwestern’s McCormick School of Engineering; “When living things can adapt, however, they are more functional. We wanted to find the specific set of conditions under which bilayers, which control so much of the cell, can morph in nature.”

In bilayer membranes, the two layers of amphiphile molecules form a crystalline shell around its contents. The density and arrangement of the molecules determine the membrane’s porosity, strength, and other properties. Taking advantage of the ionizable charge in the head groups, the team coassembled dilysine (+2) and carboxylate (-1) amphiphile molecules of varying hydrophobic-tail lengths into bilayer membranes at various (physiologically relevant) pH levels, which changed the effective charge of the heads. Then, using X-ray scattering technology at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) at Argonne National Laboratory’s Advanced Photon Source, the researchers analyzed the resulting crystallization formed by the bilayer molecules. Freezing has generally been used to produce electron microscope images of membrane structures, however this process is labor-intensive and changes the structural fidelity, making it less relevant for understanding membrane assembly and behavior under physiological conditions.

From the results, the researchers found that most molecules did not notably respond to the change in acidity, but for those that possessed a critical tail length (which correlates to the level of hydrophylia) the charge of the heads changed to the extent that their two-dimensional crystallization morphed from a periodic rectangular-patterned lattice in more basic pH solutions to a hexagonal lattice in more acidic pH solutions. Shells with a higher symmetry (e.g., hexagonal) are stronger and less brittle than those with lesser symmetry. The change in pH also altered bilayer thickness and compactness. Changing the crystallinity, density, and spacing of molecules within membranes could help researchers control diffusion rates and the encapsulation and release efficiency of molecules in vesicles, which would further shed light on cell function and could enable advances in drug delivery and other bio-inspired technology.

The study was published ahead of print online September 24, 2013, in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Related Links:
McCormick School of Engineering and Applied Science at Northwestern University



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Capillary Blood Collection Tube
IMPROMINI M3
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.