Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Glass Scaffolds Designed to Repair Bones Also Show Potential as Weight-Bearing Implants

By LabMedica International staff writers
Posted on 08 Aug 2013
Researchers have developed a type of glass implant that could soon be used to heal damaged bones in the legs, arms, and other areas of the body that are most exposed to the weight-bearing stresses.

This is the first time researchers have shown a glass implant strong enough to bear weight can also integrate with bone and promote bone growth, according to lead researcher Dr. More...
Mohamed N. Rahaman, professor of materials science and engineering at Missouri University of Science and Technology (S&T; Rolla, USA).

In earlier studies, the Missouri S&T researchers developed a glass implant strong enough to handle the weight and pressure of repetitive movement, such as walking or lifting. In their most recent study, published in the July 2013 issue, and available online in the journal Acta Biomaterialia, the researchers reported that in the form of a porous scaffolding, the glass implant, in addition, combines with bone and stimulates bone growth.

This fusion of strength and bone growth opens new possibilities for bone repair, according to Dr. Rahaman, who also directs Missouri S&T’s Center for Biomedical Science and Engineering, where the research was conducted. “Right now, there is no synthetic material that is practical for structural bone repair,” Dr. Rahaman said.

Traditional approaches to structural bone repair involve either the use of a porous metal, which does not reliably heal bone, or a bone allograft from a cadaver. Both approaches are costly and carry risks, according to Dr. Rahaman. He believes the type of glass implant developed in his center could provide a more feasible approach for repairing injured bones. The glass is bioactive, which means that it reacts when implanted in living tissue and convert to a bone-like material.

Dr. Rahaman and his coworkers, in their latest research, implanted bioactive glass scaffolds into sections of the calvarial bones (skullcaps) of laboratory rats, then examined how well the glass integrated with the surrounding bone and how quickly new bone grew into the scaffold. The scaffolds were created in Dr. Rahaman’s laboratory through a process known as robocasting, a computer-controlled technique to make materials from ceramic slurries, layer by layer, to ensure uniform structure for the porous material.

The Missouri S&T researchers, in previous studies with porous scaffolds of the silicate glass, known as 13-93, were found to have the same strength characteristics as cortical bone. Cortical bones are those outer bones of the body that bear the most weight and undergo the most repetitive stress. They include the long bones of the arms and legs.

However, what Dr. Rahaman and his colleagues could not determine was how well the silicate 13-93 bioactive glass scaffolds would integrate with bone or how quickly bone would grow into the scaffolding. “You can have the strongest material in the world, but it also must encourage bone growth in a reasonable amount of time,” stated Dr. Rahaman. He considers three to six months to be a reasonable time frame for completely regenerating an injured bone into one strong enough to bear weight.

In their study, the S&T researchers found that the bioactive glass scaffolds bonded quickly to bone and promoted a substantial amount of new bone growth within six weeks. Whereas the skullcap is not a load-bearing bone, it is principally a cortical bone. The aim of this research was to demonstrate how well this type of glass scaffolding, already shown to be strong, would interact with cortical bone.

Dr. Rahaman and his fellow researchers in the Center for Biomedical Science and Engineering are now studying true load-bearing bones. They are now evaluating the silicate 13-93 implants in the femurs (leg bones) of laboratory rats. In the future, Dr. Rahaman plans to experiment with modified glass scaffolds to see how well they enhance specific characteristics within bone. For instance, doping the glass with copper should promote the growth of blood vessels or capillaries within the new bone, while doping the glass with silver will give it antibacterial properties.


Related Links:

Missouri University of Science and Technology





Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Human Estradiol Assay
Human Estradiol CLIA Kit
ESR Analyzer
TEST1 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.