Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Mutation in Potassium Channel Gene Linked to Rare Form of Pulmonary Hypertension

By LabMedica International staff writers
Posted on 08 Aug 2013
A mutation in a gene that encodes a potassium channel protein has been linked to development of the rare disease idiopathic pulmonary arterial hypertension (PAH).

PAH, a rare fatal disease with an incidence of about two to three cases per million of population per year, is characterized by high blood pressure in the lungs that eventually leads to coronary hypertrophy and death. More...
Current there is no cure or effective treatment for PAH, and most PAH patients die within five to seven years of diagnosis.

To gain a better understanding for the underlying genetic cause behind PAH, investigators at the Columbia University Medical Center (New York, NY, USA) studied a family in which multiple members had PAH without identifiable mutations in any of the genes known to be associated with the disease, including BMPR2, ALK1, ENG, SMAD9, and CAV1. Three family members were studied with whole-exome sequencing. Additional patients with familial or idiopathic PAH were screened for the mutations in the gene that was identified on whole-exome sequencing.

The investigators reported in the July 15, 2013, online edition of the New England Journal of Medicine (NEJM) that they had identified a novel heterozygous missense variant in KCNK3 (the gene encoding potassium channel subfamily K, member 3) as a disease-causing candidate gene in the family. Five additional heterozygous missense variants in KCNK3 were independently identified in 92 unrelated patients with familial PAH and 230 patients with idiopathic PAH.

Computer models predicted that all six novel variants would be damaging to channel protein function, and these predictions were confirmed by electrophysiological studies of the channel that showed that all the missense mutations resulted in loss of function. The reduction in potassium-channel current caused by the mutations in KCNK3 could be reversed in cell cultures by treatment with a phospholipase inhibitor, the candidate drug ONO-RS-082.

“We were surprised to learn that KCNK3 appears to play a role in the function of potassium channels in the pulmonary artery,” said senior author Dr. Wendy K. Chung, associate professor of pediatrics and medicine at Columbia University Medical Center. “No one had suspected that this mechanism might be associated with PAH. The most exciting thing about our study is not that we have identified a new gene involved in pulmonary hypertension, but that we have found a drug that can rescue some mutations. In genetics, it is common to identify a gene that is the source of a disease. However, it is relatively rare to find potential treatments for genetic diseases.”

“KCNK3 mutations are a rare cause of PAH, so I do not want to oversell our findings,” said Dr. Chung. “Still, it is exciting that we have found a mechanism that can lead to the disease that is a new, druggable target. It is also possible that targeting KCNK3 may be beneficial for patients who have PAH independent of their KCNK3 genetic status.”

Related Links:

Columbia University Medical Center



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Clinical Chemistry System
P780
Hemodynamic System Monitor
OptoMonitor
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.