Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Supercomputer Offers Advanced Algorithms to Develop Predictive Models of Disease

By LabMedica International staff writers
Posted on 29 Apr 2013
After one year of operation, a USD 3 million supercomputer is a large step forward in constructing a substantial computational and data-intensive infrastructure designed specifically for genomics. More...


Mount Sinai Hospital (New York, NY, USA) is one of the first academic medical centers in the United States to build and operate a supercomputer. Minerva, named after the Roman goddess of wisdom and medicine, utilizes cutting-edge computer algorithms to develop predictive models of disease that can better help diagnose and treat patients.

Built on-site by Mount Sinai’s department of scientific computing, Minerva analyzes the growing “digital universe,” including genomic and phenotypic data, as well information from electronic medical records (EMRs). It has already analyzed hundreds of human genome sequences with a projection of hundreds of thousands yearly. With thousands of processing cores working together, and tens of terabytes of memory, the supercomputer can perform complicated and sophisticated tasks rapidly and with more precision than ever before.

“With Minerva, Mount Sinai has the ability to quickly analyze genomic patterns to provide a greater understanding of the causes of disease and how to personalize treatments according to an individual’s genetic composition,” said Dennis S. Charney, MD, dean of the Icahn School of Medicine at Mount Sinai. “The supercomputer is able to accomplish real-time visualization of advanced molecular models, promoting drug development and allowing us to test the effects of molecular variations on different receptors in the body.”

The supercomputer also stores data from Mount Sinai’s biobank, called BioME, a collection of over 24,000 individuals’ DNA and plasma samples that are stored in a way that protects patients’ privacy while allowing research to be performed. The biobank accesses a wide range of genetic and environmental data on patients who have agreed to participate throughout their lives.

“The supercomputer is helping us better understand and foresee the course of disease for each patient, and to identify the outcome to a particular therapeutic intervention in advance,” said Patricia Kovatch, associate dean for scientific computing at Mount Sinai Medical Center and the engineer who constructed Minerva. “Thus, using genomic data, information from our biobank as well as complex simulations of molecules, we are able to enhance personalized medicine to a degree that has never been done before.”

Eric Schadt, PhD, Mount Sinai’s director of the Institute for Genomics and Multiscale Biology, cited the need for Minerva in critical areas of research that is already underway. “In order to analyze and integrate all the different data dimensions over the population, and build predictive models of disease, we need the supercomputer. With the infrastructure we’re creating, and the people we’ve recruited, combined with the resources already available at Mount Sinai, we are coming together to form a new epicenter of research on personalized medicine and the new biology.”

“Few research centers have the type of computing infrastructure to allow advanced modeling that Mount Sinai can now do on-site. Along with other advances in genetics and some recent outstanding additions to our faculty, Minerva further cements Mount Sinai’s reputation at the forefront of the ‘precision medicine’ movement,” said Dr. Charney.

Joseph Buxbaum, PhD, director of the Mt. Sinai’s Seaver Autism Center for Research and Treatment, according to Minerva’s supercomputing capacity plays a key role in analyzing data gathered as part of the Autism Sequencing Consortium, a multinational collaboration where all the 22,000 genes in humans will be sequenced in thousands of individuals with autism spectrum disorder. “The consortium plans to have such data for as many as 30,000 people, including controls, over the next three years, and we anticipate that this will result in the discovery of several hundred autism genes. Without Minerva’s computational power, a project of this scope would simply not be feasible.”

To date, tens of millions of core processing hours of research has been performed by Minerva, added Dr. Kovatch. “The computer has helped scientists publish over 25 research articles. Minerva helps scientists analyze their data quicker than ever before, as well as complete more complex tasks simultaneously. The end result is that more science, even basic science, is done quicker and more efficiently.”

Related Links:
Mount Sinai Hospital




Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic Hematology Analyzer
DH-800 Series
Rapid Molecular Testing Device
FlashDetect Flash10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.