Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Researchers Identify Inflammation's Key Negative Regulator

By LabMedica International staff writers
Posted on 23 Apr 2013
Researchers working with a genetically engineered mouse model found that blocking the activity of the enzyme PDE4B (phosphodiesterase 4B) suppressed inflammation by increasing the expression of the deubiquitinase enzyme CYLD (cylindromatosis (turban tumor syndrome)).

The PDE4B gene is a member of the type IV, cyclic AMP (cAMP)-specific, cyclic nucleotide phosphodiesterase (PDE) family. More...
Cyclic nucleotides are important second messengers that regulate and mediate a number of cellular responses to extracellular signals, such as hormones, light, and neurotransmitters. The cyclic nucleotide phosphodiesterases (PDEs) regulate the cellular concentrations of cyclic nucleotides and thereby play a role in signal transduction. This gene encodes a protein that specifically hydrolyzes cAMP. Altered activity of this protein has been associated with schizophrenia and bipolar affective disorder.

The ubiquitin-proteasome system is the mechanism by which malfunctioning and possibly toxic proteins are removed from the cell. This system is based on the tagging of damaged proteins with ubiquitin, and the digestion of the subsequent ubiquinated proteins by the proteasome. CYLD is a protease with endodeubiquitinase activity that specifically cleaves lysine-63-linked polyubiquitin chains, thereby removing the ubiquitin tag. This enzyme is a regulator of pathways leading to NF-kappa-B activation and a mediator of cell survival, proliferation, and differentiation via its effects on NF-kappa-B activation. By being a negative regulator of Wnt signaling CYLD promotes acetylation of alpha-tubulin and stabilization of microtubules and is involved in the regulation of microtubule dynamics. Furthermore, CYLD plays a role in the regulation of inflammation and the innate immune response, via its effects on NF-kappa-B activation.

Investigators at Georgia State University (Atlanta, USA) used mice genetically engineered to lack the CYLD gene to determine its role in the process of inflammation.

They reported in the April 9, 2013, online edition of the journal Nature Communications that inhibition of PDE4B markedly enhanced upregulation of CYLD expression in response to bacteria, thereby suggesting that PDE4B acted as a negative regulator for CYLD. In CYLD-deficient mice, inhibition of PDE4B no longer suppressed inflammation. PDE4B negatively regulated CYLD via specific activation of JNK2 (c-Jun N-terminal kinase 2) but not JNK1 (c-Jun N-terminal kinase 1). In addition, postinoculation administration of a PDE4 inhibitor suppressed inflammation in this animal model, thus demonstrating the therapeutic potential of targeting PDE4

The results of this study provide insights into how inflammation is tightly regulated via the inhibition of its negative regulator and may also lead to the development of new anti-inflammatory therapeutics that increase CYLD expression.

"This is the key negative regulator that we have been searching after for years," said senior author Dr. Jian-Dong Li, professor of biology at Georgia State University. "There is a need for better drugs to control inflammation, because current treatments come with serious side effects. Steroids are commonly used, but cannot be used over the long-term, as they suppress the immune system."

Related Links:

Georgia State University



Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.