Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Nanoparticle Gold-Filled Silicon Wafers Effectively Kill Breast Cancer Cells

By LabMedica International staff writers
Posted on 02 Feb 2012
Heat generated when hollow gold nanoparticles embedded in silicon nanowafers were exposed to infrared light effectively killed breast cancer cells in vitro and in a mouse model.

Investigators at The Methodist Hospital Research Institute (Houston, TX, USA) created the highly efficient thermal transfer nanoparticles by confining gold nanoshells into nanopores of silicon microparticles. More...
In the presence of infrared light at 808 nm, the gold-filled silicon particles heated up a surrounding aqueous solution by about 20 °C in seven minutes.

Hollow gold responds to near-infrared (NIR) light, which is able to penetrate deeply inside the body and which causes less damage to tissues compared to shorter wavelength light due to less absorbance by the tissue chromophores.

The investigators used human and mouse breast-cancer lines to test cell killing in vitro and the mouse model of 4T1 mammary tumor for in vivo studies. They reported in the January 3, 2012, online edition of the journal Advanced Healthcare Materials that the nanoparticles effectively killed cancer cells both in vitro and in the mouse model.

“Hollow gold nanoparticles can generate heat if they are hit with a near-infrared laser,” said first author Dr. Haifa Shen, assistant research member at The Methodist Hospital Research Institute. “Multiple investigators have tried to use gold nanoparticles for cancer treatment, but the efficiency has not been very good – they would need a lot of gold nanoparticles to treat a tumor. We found that heat generation was much more efficient when we loaded gold nanoparticles into porous silicon, the carrier of the multistage vectors.”

“The hollow gold particles we load into the porous silicon must be the right size and have the correct-sized space inside them to interact with the infrared light we are using,” said Dr. Shen. “But the wavelength of infrared we use will have to change depending on where the tumor is. If it is close to the skin, we can use shorter wavelengths. Deeper inside the body, we have to use longer wavelengths of infrared to penetrate the tissue. The hollow space of the gold particles must be modified in response to that. We are planning preclinical studies to study the technology's impact on whole tissues, breast cancer cells, and possibly pancreatic cancer cells. We would also like to see whether this approach makes chemotherapy more effective, meaning you could use less drugs to achieve the same degree of success in treating tumors. These investigations are next.”

Related Links:

The Methodist Hospital Research Institute


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Laboratory Software
ArtelWare
Gold Member
Hematology Analyzer
Medonic M32B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.