Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Scientists Find Way to Make Cancerous and Healthy Cells Thrive in the Lab

By LabMedica International staff writers
Posted on 04 Jan 2012
In a major step that could transform biomedical research, scientists have found a way to keep tumor cells as well as healthy cells taken from a cancer patient alive in the laboratory, which previously had not been possible. More...
Normal cells typically die in the lab after dividing only a few times, and many common cancers will not grow, unchanged, outside of the body.

This new technique, reported online December 19, 2011, in the American Journal of Pathology, could be the key development that drives in a new era of customized cancer medicine, and has potential application in regenerative medicine, according to the study’s lead investigator, Richard Schlegel, MD, PhD, chairman of the department of pathology at Georgetown Lombardi Comprehensive Cancer Center (Washington DC, USA), a part of Georgetown University Medical Center. “Because every tumor is unique, this advance will make it possible for an oncologist to find the right therapies that both kills a patient’s cancer and spares normal cells from toxicity,” he said. “We can test resistance as well chemosensitivity to single or combination therapies directly on the cancer cell itself.”

The researchers, which also include several scientists from the US National Institutes of Health (NIH; Bethesda, MD, USA), revealed that by adding two different substances to cancer and normal cells in a laboratory forces them to change into stem-like cells--adult cells from which other cells are produced.

The two substances are a Rho kinase (ROCK) inhibitor and fibroblast feeder cells. ROCK inhibitors help block cell movement, but it is unclear why this agent turns on stem cell attributes, Schlegel says. His coinvestigator Alison McBride, PhD, of the National Institute of Allergy and Infectious Diseases (Bethesda, MD, USA), had discovered that a ROCK inhibitor allowed skin cells (keratinocytes) to reproduce in the laboratory while feeder cells kept them alive.

The Georgetown researchers--13 investigators in the departments of pathology and oncology-- tried ROCK inhibitors and fibroblast feeder cells on the nonkeratinocyte epithelial cells that line glands and organs to see if they had any effect. They found that both were needed to produce a dramatic effect in which the cells visibly changed their shape as they reverted to a stem-like state.

“We tried breast cells and they grew well. We tried prostate cells and their growth was fantastic, which is amazing because it is normally impossible to grow these cells in the lab,” Dr. Schlegel stated. “We found the same thing with lung and colon cells that have always been difficult to grow. In short, we discovered we can grow normal and tumor cells from the same patient forever, and nobody has been able to do that,” he said. “Normal cell cultures for most organ systems can’t be established in the lab, so it wasn't possible previously to compare normal and tumor cells directly.”

The ability to immortalize cancer cells will also make biobanking both viable and relevant, according to Dr. Schlegel. The researchers further discovered that the stem-like behavior in these cells is reversible. Removing the ROCK inhibitor forces the cells to differentiate into the adult cells that they were initially. This “conditional immortalization” could help further the field of regenerative medicine, noted Dr. Schlegel.

However, the most direct change in medical practice from these findings is the potential they have in “revolutionizing what pathology departments do,” Dr. Schlegel said. “Today, pathologists don’t work with living tissue. They make a diagnosis from biopsies that are either frozen or fixed and embedded in wax. In the future, pathologists will be able to establish live cultures of normal and cancerous cells from patients, and use this to diagnose tumors and screen treatments. That has fantastic potential.”

Georgetown University and the National Institutes of Health have filed two patent applications on technologies described in this paper.

Related Links:

Georgetown University Lombardi Comprehensive Cancer Center
US National Institutes of Health



Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Alcohol Testing Device
Dräger Alcotest 7000
ESR Analyzer
TEST1 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.