We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Chip-Based Blood Test Accurately Diagnoses Heart Attack in Minutes

By LabMedica International staff writers
Posted on 17 Oct 2024
Print article
Image: At the heart of the blood test is the chip featuring a groundbreaking nanostructured surface on which blood is tested (Photo courtesy of Will Kirk/Johns Hopkins University)
Image: At the heart of the blood test is the chip featuring a groundbreaking nanostructured surface on which blood is tested (Photo courtesy of Will Kirk/Johns Hopkins University)

Heart attacks demand immediate medical attention to improve patient outcomes; however, while early diagnosis is crucial, it can be quite challenging—and nearly impossible outside of a clinical environment. Diagnosing heart attacks remains one of the most difficult tasks due to the wide variability of symptoms and subtle biological signals that can be easily overlooked in the early stages of an attack when medical intervention can be most beneficial. Individuals suspected of experiencing a heart attack typically undergo a series of tests to confirm the diagnosis, usually beginning with electrocardiograms that measure the heart's electrical activity—a procedure that takes about five minutes—and blood tests to identify the indicators of a heart attack, where lab results can take at least an hour and often require repetition. A new blood test has now been developed that can diagnose a heart attack in minutes rather than hours, and it has the potential to serve as a tool for first responders and individuals at home.

Researchers at Johns Hopkins University (Baltimore, MD, USA) have published their proof-of-concept work in Advanced Science, which can be modified to detect infectious diseases and cancer biomarkers. The focus of the research has been on developing diagnostic tools through biophotonics, utilizing laser light to identify biomarkers—bodily responses to various conditions, including diseases. In this instance, they applied the technology to detect the earliest signs in the blood that indicate a heart attack. The stand-alone blood test created by the team yields results in just five to seven minutes. They claim it is also more accurate and cost-effective than current methods.

Although initially designed for rapid diagnostic use in a clinical setting, the test could be adapted into a hand-held device for use by first responders in the field or even for personal use at home. Central to the invention is a small chip featuring a groundbreaking nanostructured surface for blood testing. The chip's "metasurface" amplifies electric and magnetic signals during Raman spectroscopy analysis, enabling heart attack biomarkers to be detected in seconds, even at ultra-low concentrations. This tool is sensitive enough to identify heart attack biomarkers that might not be detected by existing tests or might only be recognized later in the course of an attack. While primarily intended for diagnosing heart attacks, the researchers believe the tool could also be modified to detect cancer and infectious diseases. The team plans to refine the blood test further and undertake larger clinical trials in the future.

"We're talking about speed, we're talking about accuracy, and we're talking of the ability to perform measurements outside of a hospital," said Ishan Barman, Professor, Department of Mechanical Engineering. "In the future, we hope this could be made into a hand-held instrument like a Star Trek tricorder, where you have a drop of blood and then, voilà, in a few seconds you have detection."

 

New
Gold Member
ZIKA Virus Test
ZIKA ELISA IgG
New
Gold Member
Strep Pneumoniae Rapid Test
Strep Pneumoniae (6503 – 6573)
New
Gold Member
Veterinary Hematology Analyzer
Exigo H400
New
Cytomegalovirus Assay
Alethia CMV

Print article

Channels

Immunology

view channel
Image: Example image of the high-throughput microscopy method used in the study, showing immune cells stained with different fluorescence markers (Photo courtesy of Felix Kartnig/CeMM, MedUni Vienna)

Cutting-Edge Microscopy Technology Enables Tailored Rheumatology Therapies

Rheumatoid arthritis is the most common inflammatory joint disorder, with women three times as likely to suffer from the condition as men. Treatment advances made over the past decades have led to the... Read more

Microbiology

view channel
Image: RNA sequencing directly from whole blood aims to expand access to LRTI testing (Photo courtesy of CARB-X)

Novel Test to Diagnose Bacterial Pneumonia Directly from Whole Blood

Pneumonia and lower-respiratory-tract infections (LRTIs) are among the top causes of illness and death globally, particularly in vulnerable populations such as the elderly, young children, and immunocompromised... Read more

Pathology

view channel
Image: The new method uses DNA sequencing to measure metabolites (Photo courtesy of 123RF)

New Metabolite Detection Method Using DNA Sequencing Could Transform Diagnostics

Metabolites play a vital role as biomarkers that provide insights into our health, and when their levels go awry, it can lead to diseases such as diabetes and phenylketonuria. Quantifying metabolites remains... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.