We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Automating Blood Smears Developed for Easier Malaria Diagnosis

By LabMedica International staff writers
Posted on 03 Feb 2022
Print article
Image: (a) 3D-rendered exploded view of autohaem smear showing the non-3D printed parts. (b) Photo of an autohaem smear showing the assembled device with the two microscope slides in their positions (Photo courtesy of Cambridge University)
Image: (a) 3D-rendered exploded view of autohaem smear showing the non-3D printed parts. (b) Photo of an autohaem smear showing the assembled device with the two microscope slides in their positions (Photo courtesy of Cambridge University)
Blood smears are used in diagnosis for a variety of hematological disorders, such as anemia and leukemia. They are also the preferred method of diagnosis of parasitic infections, such as malaria and filariasis in developing world laboratories.

The current “gold standard” for malaria diagnosis is by optical microscopy examination of blood smears. A thin film of the patients’ bloods is fixed onto a microscope slide and stained. The microscopists look at the smear, counting the parasites in various fields of view. These experts can establish the species of malaria and parasite density.

Bioengineers at Cambridge University (Cambridge, UK) collaborating with their colleagues in Tanzania and the UK created a series of devices, which they call “autohaem.” Autohaem devices aim at enabling even non-experts to produce consistent, high quality, thin film blood smears at low cost. The autohaem devices, solves this problem by automating the smearing process so every smear is correct and consistent. The devices come in two varieties, the autohaem smear and the autohaem smear+, the latter of which is fully automated with a motorized smearing mechanism. In tests, inexperienced technicians were able to use the device to produce expert-quality smears.

A key goal of the project was to make the devices accessible to as many people as possible, so the scientists designed their devices to be easy to build, using readily available or 3D-printed components. A pipeline for automated analysis of smear quality was presented and used for device optimization. Red Blood Cells (RBCs), at the typical hematocrit for malaria investigations, are used as the testing media. This pipeline will also be suitable for a more systematic analysis of blood smear preparation, for example, to help with training and evaluation of technicians.

Samuel McDermott, PhD, the senior author of the study, said, “Creating blood smears is a laborious, repetitive task that requires an expert level of skill and manual dexterity. By using automated blood smearing machines, such as autohaem devices, technicians will be able to increase their throughput while maintaining a high enough quality for diagnosis. In some countries, up to 81.5% of blood smears are prepared incorrectly. If a blood smear is prepared incorrectly, when examined under a microscope, the technician will struggle to make a correct diagnosis. Because these smears are often made in a rural clinic and sent to a regional facility for examination, any issues in the smear could cause days of delay.”

The authors concluded that they have developed and presented the autohaem range of devices for automated blood smearing. Autohaem smear is a mechanical device, and autohaem smear+ is an electro-mechanical device. The devices are designed to be sustainable and all the designs and assembly instructions are available under an open source license. The study was published on January 18, 2022, in the journal Review of Scientific Instruments.

Related Links:
Cambridge University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.