We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Simple Blood Test Could Predict Alzheimer’s Risk 20 Years Before Symptoms Appear

By LabMedica International staff writers
Posted on 09 Nov 2023
Print article
Image: The simple test could give 20 years warning for Alzheimer\'s disease (Photo courtesy of Australian National University)
Image: The simple test could give 20 years warning for Alzheimer\'s disease (Photo courtesy of Australian National University)

Dementia ranks as one of the top causes of mortality, and traditional methods for diagnosing Alzheimer's disease typically require invasive and costly procedures in hospitals, like lumbar punctures. These can be strenuous for individuals both physically and emotionally. Now, a simple, affordable, and non-invasive blood test could offer a way to predict the likelihood of someone developing Alzheimer's or multiple sclerosis (MS) decades before the onset of clinical symptoms.

Physicists from the Australian National University (Canberra, Australia) devised a method that employs a silicon dioxide membrane with microscopic pores, in conjunction with artificial intelligence (AI), to search for proteins in the blood. This approach aims to detect early signs of neurodegeneration by identifying specific biomarkers that could indicate the beginning stages of Alzheimer’s. The process requires just a small blood sample and could deliver results almost immediately. This would make it possible for local clinicians to conduct the test, thereby eliminating the need for a hospital trip, which could be particularly beneficial for individuals in distant and rural communities.

This innovative device is compact, similar in size to a smartphone, and incorporates a silicon chip with a membrane that separates chambers filled with a conducting solution containing the blood sample. When an electric current passes through the membrane, the passage of proteins through the nanopores causes momentary dips in the current. Highly time-resolved plots of the current dips reveal the unique signatures of each protein, which the AI system can then identify to pinpoint markers of illness. Since proteins are essential to life and hold specific information unique to each person, they can reveal vital insights into one’s health, such as indications of brain cell deterioration.

Detecting proteins linked with early neurodegeneration in the blood is akin to finding a needle in a haystack. Thanks to its high throughput and the vast quantity of individual proteins passing through the pore, the device can locate these 'needle' biomarkers in the 'haystack' of blood. The membrane, despite its slim profile, is durable. Its heightened sensitivity is key to detecting low concentrations of proteins, which is essential because only small amounts of neural proteins traverse the blood-brain barrier to appear in blood samples. The AI used in this process is versatile, designed to simultaneously screen for a variety of neurological conditions, including Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis (ALS).

The research team is further improving the device’s detection capabilities with an upgraded design featuring a conical nanopore set within a thicker membrane. In this upgraded model, proteins interact with the conical entrance, slowing down as they pass through. This interaction provides a more prolonged, detailed profile of the current dips. The researchers are also exploring new pore shapes such as double cones and funnels, built utilizing the Heavy Ion Accelerator Facility whose ion bombardment can be accurately controlled to create damage tracks that can generate a range of pore shapes after subsequent etching. While Alzheimer’s remains incurable, early detection of the risk for Alzheimer’s—up to twenty years before clinical symptoms arise—could substantially enhance patient health outcomes. The screening technique is expected to become available within the next five years.

“Instead of waiting for weeks for the result, a typical measurement would take about 15 minutes and results are available in nearly real time,” said PhD researcher and co-author Shankar Dutt. "If that person can find out their risk level that far in advance, then it gives them plenty of time to start making positive lifestyle changes and adopt medication strategies that may help slow down the progression of the disease.”

Related Links:
Australian National University

Platinum Supplier
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Gold Supplier
Automatic Western Blot Analyzer
Tenfly Phoenix Blot Analyzer
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Supplier
Influenza Virus Test
NovaLisa Influenza Virus B IgM ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: A module with eight micro-devices, complete with microfluidic channels and drive motors (Photo courtesy of U.S Department of Energy)

Highly Sensitive pH Sensor to Aid Detection of Cancers and Vector-Borne Viruses

Understanding the acidity or alkalinity of substances through pH measurement is crucial in many fields, from environmental monitoring to healthcare product safety. In many cases, these measurements must... Read more

Hematology

view channel
Image: The QScout hematology analyzer has received US FDA 510(k) clearance (Photo courtesy of Ad Astra Diagnostics)

First Rapid-Result Hematology Analyzer Reports Measures of Infection and Severity at POC

Sepsis, a critical medical condition that arises as an extreme response to infection, poses a significant health threat. It occurs when an infection triggers a widespread inflammatory response in the body.... Read more

Immunology

view channel
Image: PointCheck is the world’s first device for non-invasive white cell monitoring (Photo courtesy of Leuko Labs)

World’s First Portable, Non-Invasive WBC Monitoring Device to Eliminate Need for Blood Draw

One of the toughest challenges for cancer patients undergoing chemotherapy is experiencing a low count of white blood cells, also known as neutropenia. These cells play a crucial role in warding off infections.... Read more

Microbiology

view channel
Image: Current testing methods for antibiotic susceptibility rely on growing bacterial colonies in the presence of antibiotics (Photo courtesy of 123RF)

Rapid Antimicrobial Susceptibility Test Returns Results within 30 Minutes

In 2019, antimicrobial resistance (AMR) was responsible for the deaths of approximately 1.3 million individuals. The conventional approach for testing antimicrobial susceptibility involves cultivating... Read more

Pathology

view channel
Image: AI methods used in satellite imaging can help researchers analyze tumor images (Photo courtesy of Karolinska Institutet)

AI Approach Combines Satellite Imaging and Ecology Techniques for Analysis of Tumor Tissue

Advancements in tumor imaging technology have significantly enhanced our ability to observe the minute details of tumors, but this also brings the challenge of interpreting vast amounts of data generated... Read more

Industry

view channel
Image: The acquisition significantly expands Medix Biochemica’s portfolio of IVD raw materials (Photo courtesy of ViroStat)

Medix Biochemica Acquires US-Based ViroStat to Expand Infectious Diseases Antibody Offering

Medix Biochemica (Espoo, Finland), a supplier of critical raw materials to the in vitro diagnostics (IVD) industry, has acquired ViroStat LLC (Portland, ME, USA), a provider of infectious disease antibodies... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.